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Abstract—Ferroelectric field-effect transistors (FeFETs) are
emerging to be a promising candidate for low-power in-memory
compute based platform design for accelerating AI workloads.
However, device-circuit non-idealities and variations due to device
scaling pose significant challenges. The paper reviews recent
developments in this field related to in-depth characterization
of such variabilities in industry standard FeFETs and discusses
the interplay of non-linearities in programmable conductance
states, device-to-device and cycle-to-cycle variations with device
scaling. We outline the design of variation-tolerant neuromorphic
hardware accelerators through hardware-software-neuroscience
co-design strategies that considers such non-idealities during the
training process.

Index Terms—Neuromorphic Computing, Ferroelectric Field
Effect Transistors, Algorithm-Hardware-Neuroscience Co-design,
Variation-Tolerant Design, In-Memory Computing

I. INTRODUCTION

Ever-increasing computational requirements of neural net-
works to solve complex Al workloads has driven the quest for
alternatives beyond conventional CMOS based von-Neumann
computing architectures which remain energy and memory
bandwidth limited due to repeated bidirectional data transfer
between the memory and compute [1]. Inspired by the in-
situ memory embedded compute occurring in the brain, re-
cent advances in neuromorphic computing [2], [3] leverage
emerging non-volatile memory (eNVM) devices arranged in a
cross-array fashion to implement Compute-In-Memory (CIM)
systems for parallel evaluation of the dot product computing
kernel necessary for hardware acceleration of neural network
workloads. While different eNVM devices are being cur-
rently explored like resistive random access memory (RRAM),
phase-change memory (PCM), magnetic devices, among oth-
ers [4]; Hafnia (H fO-)-based ferroelectric field-effect transis-
tors (FeFETs) have shown great promise by dint of its back-
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end-of-line (BEOL) CMOS compatibility, scalability, ultra-
low energy consumption and disengaged read-write operation
[5], [6]. Especially, multi-state programming capability in a
single FeFET device by gradually modulating its polarization
makes it an attractive candidate for analog synaptic applica-
tions [7]-[11]. However, inherent device-circuit non-idealities,
especially for aggressively scaled devices, challenges its fea-
sibility as a CIM device alternative. Thus, an intertwined
hardware-algorithm analysis is critical to understand the non-
linear impact of FeFET device variability and operating circuit
conditions on computational and algorithm performance under
device scaling. Moreover, to counter the non-ideal variations,
taking measures for effective variation-tolerant approaches
during the training process is necessary to ensure reliable
operation. Prior works have considered simulating different
random process variations (ferroelectric phase variation, metal
work function variation, line-edge roughness effect) to in-
vestigate their impact on threshold voltage variations [12]
and current variations due to continual reading operations
[13]. Moreover, effect of ferroelectric thickness on FeFET
device-circuit non-idealities and system accuracy has been
reported [14]. Additionally, while there exists prior works
on variability-aware algorithmic approaches to design reliable
generic memristor technology-based IMC systems, they do
not consider technology specific interplay effects of FeFET
variations with device properties [15]-[18]. This work reviews
recent advancements on extensive characterization analysis of
industry-standard FeFET devices for 28nm high- K metal gate
(HKMG) technology to understand the interplay of device
non-idealities (bit precision, non-linearities in programming,
device-to-device (D2D) variations, cycle-to-cycle (C2C) vari-
ations, data retention, among others) with device dimensions
and operating voltage conditions. We review various algo-
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Fig. 1: (a) TEM cross-section and schematic diagram of the FeFET
device with 8nm thick doped H fO» and native oxide layer of 1nm
thick S7O2, (b) Applied programming pulse scheme with a reset pulse
of —4V and a programming pulse varied from 2V to 4V with 20mV
step, (c) Programmed conductance modulation of single 0.24um X
0.24pum, 0.5um x 0.24pum and 1pum X 1pum devices respectively at
a read gate voltage of 1.2V [19].

rithmic techniques to combat variations by leveraging recent
advancements in deep learning [19], [20]. We conclude with a
forward-looking perspective of autonomous self-repair of non-
ideal neuromorphic hardware by drawing inspiration from the
self-repair role of glial cells in the brain [21].

II. FEFET NON-IDEALITY CHARACTERIZATION AND
ALGORITHM IMPACT

Hafnia-based FeFET is structurally the same as traditional
MOSFETs where the gate stack comprises of doped H fOq
as ferroelectric layer and SiOy as native oxide interlayer.
Fig. 1(a) shows the TEM cross-sectional image and schematic
portrayal of the device [22], [23]. Three different device sizes
(noted in the figure inset) are considered [19]. Fig. 1(b) demon-
strates the applied voltage pulse scheme to the gate terminal of
the FeFET. The devices are subjected to a high negative reset
pulse of —4V to ensure negative polarization state of all the
domains resulting in minimum conductance state of the device
followed by a programming pulse ranging from 2V —4V with
a step size of 20mV progressively applied to the gate terminal.
Immediately after every programming event, the drain current
has been read out to analyze the conductance profile of the
devices at a particular operating voltage, as shown in Fig. 1(c),
where gradual change in conductance can be observed in larger
devices due to the presence of more number of domains, hence
higher number of programmable states. On the contrary, scaled
devices experience stochastic, discrete and non-linear changes
in conductance due to presence of lower number of domains
in the ferroelectric layer [24].

FeFETs exhibit probabilistic conductance switching behav-
ior due to inherent stochastic nucleation process that dominates
over polarization switching dynamics [25] (see Fig. 2). Fig.
2(a) plots the severity of variations with respect to the ap-
plied programming pulses [19], [20]. Lower operating voltage
significantly increases conductance variations, especially in
scaled devices. As represented in Fig. 2(b), significant C2C
variations is present in the device programming profile al-
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Fig. 2: (a) Severity of variations (o/u) as a function of applied
programming pulses, (b) Cycle-to-cycle variations for varying device
sizes. The solid lines depict the mean variations while the shaded
regions represent variations among 50 repeated measurements of a
singular device, (c) Device-to-device variations for different device
dimensions. The shaded regions indicate the deviations from the mean
(solid lines) upon measuring 3 different devices of each dimension,
(d) Retention study of few intermediate states for different device
sizes [19], [20].

though it does not seem to depend strongly on device scaling.
Furthermore, different identically sized FeFET devices have
different orientation of the domains with varying coercive field
voltages resulting in D2D variations [26]. As illustrated in
Fig. 2(c), such variations increase significantly with device
scaling. Device state retention data is shown in Fig. 2(d) where
state retention does not seem to be a concern for FeFETs,
although there may be minor drifts for some conductance
states. In addition to such device-level non-idealities, other
types of issues like stuck-at faults can also be a concern
where the synaptic elements are permanently fixed at their
minimum/maximum conductance state, failing to respond to
programming pulses. Such faults can originate from various
device-level defects, including trapped charges, defects within
the ferroelectric layer, or imperfections introduced during the
fabrication process [27].

Since there are multiple sources of non-idealities, many of
which impacts algorithm-level performance in an intertwined
fashion, it is important to assess which factors influence
the system-level accuracy to the maximum extent. Recent
quantitative analysis [19] performed using NeuroSim [28], a
popular CIM-based circuit-level macro model to analyze infer-
ence performance, has revealed that combined C2C and D2D
variations are the main source of accuracy degradation. For ex-
ample, as shown in Fig. 3, hardware-constrained performance
evaluation of LeNet-5 on MNIST dataset [29] achieves near
ideal software-based accuracy considering state discretization
effects and programming non-linearities but excluding C2C
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Fig. 3: Comparison between inference performances of the CIM
architecture with the presence and absence of device-level varia-
tions along with improvement of accuracy achieved by employing
variation-aware hardware-in-loop training to mitigate the effect of
variations [19].

and D2D variation effects. But, the inference accuracy in-
clusive of device-level combined C2C-D2D variations drops
by ~ 13% — 28% for varying device sizes [19]. Typically
hardware-in-loop training can be used to combat such accu-
racy degradation effects where every iteration of the training
process considers the noise originating from the hardware
in the feedforward propagation of the inputs. As represented
in Fig. 3, variation-aware hardware-in-loop training approach
can improve the inference accuracy by ~ 9% — 23% with
maximum accuracy recovered for larger device sizes.

III. PROBABILISTIC APPROACH TO ROBUST SYSTEM
DESIGN

While hardware-in-the-loop training is a good starting point
for combating variations, it is still computationally expensive
as the backpropagation updates need to be implemented on-
chip in an iterative fashion. In order to adopt a one-time
variation-aware training strategy, one can leverage insights
from probabilistic deep learning. Bayesian deep learning [30],
[31] is an emerging computing paradigm in this landscape
wherein a neural network (see Fig. 4) is trained with prob-
abilistic weights with the objective of making the posterior
probability distribution as close as possible to the prior. Such
Bayesian Neural Networks (BNNs) find use in confidence-
critical applications like self-driving cars where some sort
of uncertainty quantification from the network is essential.
Algorithmic researchers typically consider Gaussian priors.
However, in this scenario, one could utilize the characterized
device variation data as the intrinsic prior considering interplay
effects with device scaling and operating voltages (see Fig.
2(a)) rather than using fixed variation values. Given the
prior knowledge, the approximated posterior distributions of
weights are learnt iteratively through the “Bayes by Backprop”
method [35]. As the training process completes, the mean
values of the optimized posterior distributions are consid-
ered as the variation-aware trained weights which is then
mapped as FeFET conductance in the CIM crossbar sys-
tem for inference performance evaluation. Thus, the maxi-
mization of accuracy and minimization of FeFET reliability
issues can be simultaneously handled in the BNN training
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approach. As shown in Fig. 5, for different operating voltages,
inference performance has been evaluated for AlexNet on
CIFARIO dataset. Inference accuracy using variation-aware
BNN training approach performs better than the non-Bayesian
training framework. Moreover, the inference accuracy using
the Bayesian framework considering the intrinsic device-level
variation characteristics is comparable to the ideal software
accuracy of 85.4% [20] and it outperforms the performance
obtained using fixed variations (without considering interplay
effects with device size, programmed conductance state or
operating voltages).

IV. A NEUROSCIENCE-INSPIRED OUTLOOK FOR
VARIATION TOLERANT HARDWARE DESIGN

While variation-aware training methods effectively build
resilience during the system’s training and configuration phase,
an exciting and perhaps more profound long-term vision
involves equipping neuromorphic systems with the ability to
autonomously adapt and repair themselves during ongoing
operation. This moves beyond conventional deep learning
approaches and delves into largely untapped insights from neu-
roscience. Intriguingly, the brain’s own glial cells, particularly
astrocytes—often overlooked in neuromorphic design—are be-
lieved to possess innate self-repair capabilities. Recent studies
suggest these remarkable cells perform a crucial function
akin to activity normalization [21], [32]-[34]. By monitoring
and modulating synaptic activity, astrocytes strive to maintain
baseline neuronal firing rates, ensuring stable network function
even when faced with perturbations like synaptic failures or
variations [21].

This biological principle resonates strongly with the chal-
lenges associated with device-circuit non-idealities in IMC
system design. As detailed in Section II, such hardware is
susceptible to variations and faults, causing synaptic elements
(the FeFETsS) to hold incorrect values. These deviations from
intended weights can corrupt the in-memory computation,
leading to erroneous system-level results. Herein lies the
transformative potential: could we engineer astromorphic prin-
ciples into these computing systems? The goal would be to
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Fig. 4: Bayesian neural network where each weight value has a
posterior distribution, g(w|@), trained using "Bayes by Backprop”
method for given prior weight distribution, P(w) [35]. For a given
dataset, D, variational parameter, 6, for each weight posterior of the
BNN is updated by descending towards the gradients of the objective
function, (D, 0) = —Eyus)[log P(D]w)] + K Llg(w|0)] | P(w)),
where the data-dependent first term refers to the likelihood loss
and prior-dependent second term refers to Kullback-Leibler (KL)
5divergence loss.
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Fig. 5: Inference performance analysis of AlexNet on CIFAR10
dataset for non-Bayesian and Bayesian framework, wherein the
Bayesian framework performance has been evaluated for fixed varia-
tions and device-level intrinsic variations profile at operating voltages
of (a) 0.6V, (b) 1.2V [20].

create autonomous self-repair mechanisms that, inspired by
biology, dynamically counteracts the effects of hardware faults
[21]. Crucially, the key functions of these complex biological
processes can be translated into practical hardware imple-
mentations. Computational neuroscience modeling has shown
that the core of astrocyte-mediated temporal dynamics and
their normalization effect can be distilled into effective, local
learning rules [21]. Such local rules, where updates depend
only on directly related signals (e.g., local synaptic state,
neuronal activity), are exceptionally well-suited for efficient
implementation within the physical constraints of in-memory
crosspoint architectures, avoiding the need for complex global
communication or external calculation [21]. Recent work
applying these astromorphic principles, specifically through
Astrocyte-augmented Spike Timing Dependent Plasticity (A-
STDP: a form of bio-inspired local learning), has demonstrated
significantly better accuracy and repair convergence speed for
unsupervised learning tasks [21]. In summary, astromorphic
self-repair represents a compelling, future-driven outlook for
achieving truly robust neuromorphic computing. While current
demonstrations have primarily focused on mitigating faults
like synaptic failures and potential drift effects [21], the
underlying principles of bio-inspired normalization and local
adaptation hold potential for broader applicability and can pave
the way for next-generation Al hardware with autonomous
self-repair capabilities.

V. CONCLUSIONS

FeFETs offer significant promise for efficient in-memory
neuromorphic computing, yet realizing their potential is chal-
lenged due to inherent device-circuit variations that impact
reliability, particularly at scaled dimensions. This review high-
lighted that overcoming these hurdles demands a co-design ap-
proach - integrating extensive device characterization with so-
phisticated algorithmic solutions ranging from variation-aware
training strategies to efficient Bayesian methods incorporating
device variation statistics. Furthermore, computational neuro-
science insights offers a compelling future direction through
astromorphic self-repair, leveraging bio-inspired normalization
principles via local, hardware-compatible learning rules to
potentially achieve dynamic resilience during operation. Ul-

timately, the successful deployment of robust FeFET-based
neuromorphic systems hinges on synergistically combining
these strategies across the computing stack from devices to
circuits, systems and algorithms.
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