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Abstract—Inspired by the brain’s hierarchical processing and
energy efficiency, this paper presents a Spiking Neural Network
(SNN) architecture for lifelong Network Intrusion Detection
System (NIDS). The proposed system first employs an efficient
static SNN to identify potential intrusions, which then activates an
adaptive dynamic SNN responsible for classifying the specific at-
tack type. Mimicking biological adaptation, the dynamic classifier
utilizes Grow When Required (GWR)-inspired structural plas-
ticity and a novel Adaptive Spike-Timing-Dependent Plasticity
(Ad-STDP) learning rule. These bio-plausible mechanisms enable
the network to learn new threats incrementally while preserving
existing knowledge. Tested on the UNSW-NB15 benchmark in a
continual learning setting, the architecture demonstrates robust
adaptation, reduced catastrophic forgetting, and achieves 85.3%
overall accuracy. Furthermore, simulations using the Intel Lava
framework confirm high operational sparsity, highlighting the
potential for low-power deployment on neuromorphic hardware.

Index Terms—Spiking Neural Network (SNN), Lifelong learn-
ing, Hierarchical architecture

I. INTRODUCTION

NETWORK Intrusion Detection Systems (NIDS) face
significant challenges in scalability and energy efficiency,

especially in high-throughput environments. The inherent na-
ture of network attacks—often sparse events within a contin-
uous temporal data stream—makes SNNs a compelling, bio-
inspired alternative [1] to tackle such an application driver.
SNNs offer potential for energy savings and real-time process-
ing due to their event-driven, sparse computation. Furthermore,
real-world cybersecurity scenarios often lack comprehensive
labeled data, necessitating unsupervised or semi-supervised
learning approaches. While Spike-Timing-Dependent Plastic-
ity (STDP) is a common unsupervised learning rule in SNNs,
its performance can be limited in complex classification tasks
[2]. To enhance the efficacy and efficiency of STDP-based
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SNNs for NIDS, we explore a hierarchical architecture
inspired from the brain’s architectural organization [3]. This
involves an initial, lightweight detection phase filtering be-
nign traffic, followed by a more detailed classification phase,
optimizing resource usage and potentially improving learning
focus. Beyond static threats, NIDS must contend with the
dynamic nature of cyberattacks, requiring adaptation to novel
threats over time—a challenge known as lifelong learning.
Conventional networks, and often static SNNs, suffer from
catastrophic forgetting, losing old knowledge when learning
new patterns [4]. Addressing this requires mechanisms for
incremental learning.

To tackle both the STDP performance limitations and the
lifelong learning challenge, this paper proposes and evaluates
a Hierarchical Dynamic Spiking Neural Network (D-SNN).
This architecture combines the efficiency of the hierarchical
structure with mechanisms for continuous adaptation. Learning
employs our novel Adaptive STDP (Ad-STDP) rule, using a
neuron’s activity history (‘firing factor’) to modulate plasticity,
stabilizing memories while learning new patterns [2]. We test
this D-SNN on the UNSW-NB15 NIDS dataset, analyzing its
adaptation, knowledge retention, efficiency, and neuromorphic
hardware suitability via Lava simulations [5].

II. RELATED WORKS AND MAIN CONTRIBUTIONS

Neuromorphic approaches, particularly SNNs, are being
explored for cybersecurity due to their potential for low-
power, real-time processing. Prior work in neuromorphic NIDS
includes systems demonstrating significant speed/energy im-
provements over conventional methods [6] and implementa-
tions on hardware like Intel’s Loihi or using ANN-to-SNN
conversion techniques [7]. Unsupervised methods using au-
toencoders on neuromorphic simulators or hardware have also
shown promise [8]. However, many existing neuromorphic
NIDS often rely on supervised training paradigms or do
not explicitly tackle the challenge of continuously adapting
to new, unseen threats without forgetting past ones. Life-
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long learning, or continual learning, aims to address this
adaptation challenge, but mitigating catastrophic forgetting
remains difficult, especially in SNNs [4]. Strategies explored
in SNNs include leveraging synaptic plasticity rules like
STDP [2], developing adaptive plasticity mechanisms [9],
controlling forgetting through neuromodulation or structural
plasticity [10], and employing dynamic architectures inspired
by concepts like GWR networks [11]. While these approaches
show promise, integrating them effectively into a practical,
efficient, and hierarchical NIDS framework remains an area
ripe for investigation. Our work builds upon these founda-
tions, combining a hierarchical SNN structure (justified in
Sec. I) with dynamic adaptation and adaptive learning rules—
specifically, our novel Ad-STDP incorporating a neuron-
specific firing factor to modulate plasticity for lifelong
learning, differing from prior adaptive mechanisms—for
robust lifelong NIDS, explicitly tackling limitations of prior
works, particularly their tendency to overlook hierarchical
scalability or rigorous lifelong learning evaluation in this
context. The main contributions of this paper are:

• Hierarchical SNN with Dynamic Lifelong Learn-
ing Classifier: Design and application of a novel, bio-
plausible hierarchical SNN architecture for NIDS. This
features an efficient static SNN detector (using standard
STDP) followed by an adaptive dynamic SNN classifier.
The dynamic classifier employs GWR-inspired structural
plasticity combined with Adaptive STDP (Ad-STDP)
learning to enable continuous learning of new attack types
while mitigating catastrophic forgetting.

• Semi-Supervised Lifelong Evaluation: Demonstration
of the semi-supervised D-SNN’s effectiveness on the
UNSW-NB15 benchmark [12] in a lifelong learning sce-
nario, showcasing adaptation to new attacks while retain-
ing prior knowledge compared to static counterparts.

III. PROPOSED HIERARCHICAL D-SNN METHODOLOGY

Our proposed approach utilizes a Hierarchical D-SNN
architecture specifically designed for adaptive and efficient
Network Intrusion Detection. The motivation for a hierarchical
structure stems from several observations relevant to NIDS.
Firstly, cyberattacks are often sparse events compared to the
high volume of benign network traffic. A single, complex
classifier processing all traffic is inefficient. Secondly, real-
world network data is inherently imbalanced. A hierarchical
design allows for efficient filtering and helps mitigate the
challenges posed by this imbalance. Inspired by biological
processing pathways [3] and the need for efficiency, our
architecture decomposes the intrusion detection task into two
cascaded SNN modules (illustrated in the inset of Fig. 1):
Phase 1 (Attack Detection): A lightweight SNN module acts
as an initial filter. It employs a static architecture with a
fixed size of 100 neurons. It processes incoming network
features (encoded as Poisson spike trains [2]) to make a coarse
determination: is the traffic potentially malicious or benign?
Phase 2 (Attack Classification): This module is activated
only when Phase 1 flags potential malicious activity. It utilizes

a dynamic structure capable of adaptation. It receives the
original input features concatenated with the activity state
(average spiking rate) of the Phase 1 excitatory neurons. Its
task is to classify the specific type of attack detected.

Both modules are SNNs built with Leaky Integrate-and-
Fire (LIF) neurons, leveraging their event-driven nature for
potential energy savings [1]. Lateral inhibition and home-
ostatic adaptive thresholds are used within each module’s
excitatory layer to promote neuron specialization and prevent
dominance [2]. Beyond the hierarchical structure, the core
innovation lies in the network’s dynamic nature, enabling
adaptation and lifelong learning. Inspired by GWR principles
and the need to combat catastrophic forgetting, the Phase 2 D-
SNN dynamically adjusts its structure and synaptic plasticity.
The complete workflow, including the hierarchical structure,
dynamic adaptation, and learning, is depicted in Fig. 1.
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Fig. 1. Flowchart illustrating the core D-SNN algorithm, including dynamic
structural plasticity (growth/pruning) and Ad-STDP learning, as applied in the
Phase 2 module. The inset shows the two-phase hierarchical SNN architecture
(Phase 1 is static, Phase 2 is dynamic).

A. Key Concepts for Dynamic Adaptation

Several key metrics and concepts govern the dynamic be-
havior of the D-SNN module and adaptive learning -
Average Spiking Rate (ASR): A measure of a neuron’s
recent firing activity over a sliding time window, indicating
its response to current input stimuli.
Best Matching Unit (BMU) & Second-Best Matching Unit
(SBMU): For a given input, the BMU is the excitatory neuron
with the highest ASR, representing the closest match in the
network. The SBMU is the neuron with the second-highest
ASR [11].
Firing Factor (fi): To balance plasticity and stability during
lifelong learning, we introduce a neuron-specific firing factor.
Intuitively, new neurons need to be highly adaptable to learn
new patterns, while neurons that have already specialized
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in representing certain inputs should become more stable
to retain that knowledge. This concept is inspired by the
biological principle of habituation (where neurons become
less responsive to repeated stimuli) and GWR’s habituation
counter [11]. Our proposed firing factor (fi) implements this
idea by tracking a neuron’s activity history and influencing
its plasticity. It starts high (e.g., 1) for newly added neurons,
promoting learning. As a neuron is frequently selected as the
BMU or SBMU for inputs, indicating its successful integration
and specialization, its firing factor decays over time according
to fi = 1− 1

αi

(
1− e−(αi·n)/τff

)
, where n tracks the number

of times the neuron was selected as BMU or SBMU, τff is the
decay time constant, and αi is a neuron-specific rate constant.
The SBMU’s decay rate (αsbmu) is further scaled by its ASR
relative to the BMU (αSBMU = αBMU · ASRSBMU

ASRBMU
).

Neuron Age: A counter associated with each neuron, in-
cremented over time (e.g., per mini-batch). It is used in
conjunction with the firing factor for the pruning mechanism
in Phase 2.

B. Dynamic Structural Plasticity (Phase 2)

The Phase 2 SNN module adapts its structure through
neuron growth and pruning:
Network Growth: To accommodate new patterns without
causing catastrophic forgetting, new excitatory neurons are
added strategically. Growth is triggered when the BMU re-
sponds weakly (ASR < ath, an activity threshold) to an
input pattern that it should recognize, indicated by its low,
decayed firing factor (fBMU < fth, a firing threshold). A low
firing factor signifies that the BMU has already specialized
in learning previous patterns; forcing it to learn this new,
poorly matched pattern could overwrite its existing knowledge.
Therefore, the dual condition (low ASR and low fBMU )
identifies the need for a new neuron to handle the novel pattern.
This new neuron inherits weights similar to the BMU for rapid
integration but starts with a high firing factor (fi = 1) and zero
age, maximizing its initial plasticity specifically for learning
the new pattern.
Network Pruning: To maintain efficiency and remove redun-
dant units, neurons are pruned based on their age and activity
history. If a neuron’s age exceeds a maximum threshold
(age > agemax) and its firing factor remains consistently
high (fi > pth, a pruning threshold), it suggests the neuron
has failed to specialize or contribute meaningfully to pattern
representation. Such neurons, along with their connections, are
removed from the network.

C. Learning Rules: STDP and Ad-STDP

Synaptic weights are updated using different STDP-based
rules in each phase. The static Phase 1 module employs
standard STDP, where weight changes depend only on spike
timing [2]. The dynamic Phase 2 module uses our novel
Adaptive STDP (Ad-STDP) rule, a key contribution of this
work. This rule introduces and incorporates the presynaptic
neuron’s firing factor (fi) to modulate plasticity (Eq. 1),
balancing stability and adaptability.

∆wij =

{
A+ · fi · exp(−∆t/τpre) if ∆t > 0 (LTP)
A− · fi · exp(+∆t/τpost) if ∆t < 0 (LTD)

(1)

Here, ∆t = tpost − tpre is the relative timing difference
between postsynaptic (tpost) and presynaptic (tpre) spikes. A+

and A− represent the maximum amplitudes for Long-Term
Potentiation (LTP) and Long-Term Depression (LTD), respec-
tively. τpre and τpost are the time constants governing the
STDP window for potentiation and depression. Our work’s
novelty lies in modulating these updates with fi: High
fi of new or inactive neurons allows larger weight updates,
facilitating rapid learning. As a neuron becomes established
(fi decays), the magnitude of weight updates decreases. This
stabilizes learned representations and prevents new learning
from drastically overwriting existing knowledge, effectively
mitigating catastrophic forgetting. If fi drops very low (ap-
proaching a habituated state), plasticity is significantly reduced
for that neuron’s outgoing synapses.

D. Semi-Supervised Labeling

Following the unsupervised phase involving structural plas-
ticity and STDP/Ad-STDP learning, a small amount of
labeled data is used to assign functional labels to the excitatory
neurons [2]. In Phase 1, neurons are labeled as ‘Attack’ or
‘Benign’ based on their maximal ASR response to correspond-
ing labeled inputs. In Phase 2, neurons are assigned specific
attack type labels (e.g., ‘DOS’, ‘DDOS’, etc.) using the
same principle. This semi-supervised approach leverages the
network’s self-organization while minimizing the requirement
for extensively labeled datasets, making it suitable for real-
world scenarios where labeled data may be scarce.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

We evaluate our proposed Hierarchical D-SNN against
a baseline Static Hierarchical SNN on the UNSW-NB15
NIDS dataset [12]. Our version focuses on lifelong learning
across six distinct attack classes selected from the original
nine; the remaining three classes (e.g., Worms, Shellcode,
Analysis) are excluded due to having too few samples to
form meaningful sequential tasks in our lifelong learning
protocol. The data is preprocessed using standard cleaning,
scaling, and random forest feature selection (42 features),
with an 8:1:1 train/validation/test split. To assess adaptation,
we simulate a task-incremental lifelong learning scenario:
the network is trained sequentially on distinct tasks, each
introducing benign traffic and a new, disjoint set of attack types
(e.g., Task 1: DOS/Scanning; Task 2: Backdoor/DDOS, etc.),
without revisiting prior task data. This protocol mimics real-
world adaptation needs without full retraining. We use Python-
based simulation framework with BindsNET [13]. Efficiency
analysis use Intel Lava framework [5] simulations.

B. Results

Compared to the static baseline which suffers significant
performance degradation, the proposed Hierarchical D-SNN
effectively adapts to new tasks and mitigates catastrophic
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forgetting, demonstrating the benefits of its dynamic structure
and adaptive learning for lifelong operation. The mechanism
enabling this improved adaptation is visualized in Fig. 2,
tracking the structural evolution during the lifelong learning
process. The network begins with few neurons and dynami-
cally increases its size (growing to approx. 90 neurons) as it
encounters new information corresponding to different attack
classes. This contrasts sharply with the static baseline’s fixed
capacity.
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Fig. 2. Neuron count evolution in the D-SNN during lifelong learning.

The performance benefit of dynamic adaptation is reflected
in Fig. 3. Critically for NIDS, the dynamic network shows
substantially higher recall for most attack classes (0, 1, 4, 5),
indicating superior pattern learning and knowledge retention
essential for lifelong learning. While precision varies and
static recall is higher for Class 3, the overall recall trend
supports the dynamic approach’s adaptability. While recent
static, supervised deep learning models report high multi-class
classification accuracies on UNSW-NB15 (often exceeding
95% [14]), our Hierarchical D-SNN addresses the distinct
challenges of lifelong learning using a semi-supervised SNN
approach and is the first to report performance of a neu-
romorphic algorithm in this domain. Based on the Phase 1
detection accuracy (94.3%) and Phase 2 classification accuracy
(66.3%), weighted by the proportion of benign (72.5%) and
attack (28.5%) traffic, the estimated overall system accuracy
is approximately 85.3%. This significantly outperforms the
static SNN baseline, whose overall accuracy under the same
conditions is estimated at 80.0% (using a Phase 2 static
accuracy of 46.6%).

0 1 2 3 4 5
Class

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Static Network
Dynamic Network

0 1 2 3 4 5
Class

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Static Network
Dynamic Network

Fig. 3. Precision and Recall comparison per NIDS attack class for static vs.
dynamic SNNs.

Efficiency analysis using the Intel Lava framework high-
lights the benefits of our approach. The Hierarchical D-SNN
operates with high sparsity, indicated by very low average
inference spike rates per neuron (∼ 0.0008 for the Phase 1
filter, ∼ 0.001 − 0.002 for the dynamic classifier over 200

timesteps). This inherent sparsity, particularly in the initial
detection stage, is significantly greater than typical ANN-SNN
conversion techniques [1] and directly contributes to potential
energy savings, as computation is primarily event-driven.

V. CONCLUSIONS

Our Hierarchical D-SNN integrates structural plasticity with
adaptive Ad-STDP learning, enabling lifelong NIDS capabil-
ities that mitigate catastrophic forgetting and improve pattern
learning over static SNNs. Its advantages include hierarchical
efficiency, inherent sparsity suitable for neuromorphic hard-
ware, and reduced label dependency through semi-supervised
learning. As the first hierarchical D-SNN combining these
techniques for semi-supervised continual learning in NIDS,
this architecture offers a promising direction for robust,
energy-efficient cybersecurity, despite overheads associated
with dynamic network growth/pruning. Future work will focus
on on-chip learning, Ad-STDP refinement, and evaluation on
more complex datasets.
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