
2021 24th International Conference on Computer and Information
Technology (ICCIT), 18-20 December, 2021.

IRFD: A Feature Engineering based Ensemble
Classification for Detecting Electricity Fraud in

Traditional Meters
Md. Zesun Ahmed Mia

Electrical and Electronic Engineering
Bangladesh University of Engineering and Technology,

University of Liberal Arts Bangladesh
Dhaka, Bangladesh
zesun123@gmail.com

Md. Moinul Islam
Computer Science and Engineering

Chittagong University of Engineering and Technology
Chittagong, Bangladesh

moinulislam7002@gmail.com

Monjurul Haque
Electronics and Telecommunication Engineering

Rajshahi University of Engineering and Technology
Rajshahi, Bangladesh

mhshakib07@gmail.com

Saiful Islam
Computer Science and Engineering

Ahsanullah University of Science and Technology
Dhaka, Bangladesh

islam.saiful03@outlook.com

S.M.A Mohaiminur Rahman
Mechanical Engineering

Chittagong University of Engineering and Technology
Chittagong, Bangladesh

shovon2021@hotmail.com

Abstract—Nations have suffered significant economic losses as
a result of non-technical electric losses resulting from power
fraud. It is a criminal act of stealing electricity by applying
various mechanisms that incorporate unauthorized tapping to
the power line, bypassing the smart meter, etc. Electricity theft
is a significant concern for not only developing countries but also
developed countries as well. However, for most developing coun-
tries, the implications are catastrophic, given that their usage is
always less than their demands. Electricity theft must be detected
precisely and quickly in order to be mitigated. In our study, we
have proposed a method of predictive ensemble machine learning
techniques (IRFD) with a novel combination of feature distinction
methods to detect electricity theft. In our proposed model, we
have combined feature selection technique, Recursive Feature
Elimination with Stratified 10-Fold cross-validation (RFECV)
and Isolation Forest (IF), to identify and remove outliers along
with several machine learning classifiers to forecast the theft of
electricity. This study additionally enhances the management of
highly imbalanced fraudulent data with Borderline-SMOTE with
SVM (SVMSMOTE) and feature scaling with StandardScaler.
Following the study, the Random Forest classifier observed a
higher degree of accuracy (97.06%) with higher precision, recall,
and F1-Score. To evaluate the efficacy of our proposed model,
comparative analysis of the classification metrics is also assessed
with several machine learning classifiers like Logistic Regression,
Gradient Boosting, XGBoost, AdaBoost, KNN, ANN, along with
Random Forest before and after fitting our proposed feature

engineering techniques.
Index Terms—Electricity Fraud, Machine learning, Anomaly

detection, Isolation Forest, Recursive Feature Elimination with
Stratified 10-Fold cross-validation (RFECV), Random Forest.

I. INTRODUCTION

The most essential gift that science has given mankind is
electricity. Electricity is essential in our everyday lives. It is
critical not just in our homes but also in businesses, hospitals,
and communication networks, among other places. As a re-
sult, during the last several decades, energy consumption has
been quickly rising, necessitating more electricity to satisfy
humanity’s needs. During the production, transmission, and
distribution of electricity, there are losses [1]. These losses can
be categorized into two parts. One is the technical loss caused
by electricity energy dissipated in heat, such as core loss and
iron loss, which occurs between the source and the consumer’s
distribution point. Another type of loss is non-technical loss,
including electricity theft at the distribution level, metering
problems, and billing errors. electricity power theft may take
several forms, including tapping a line or circumventing the
energy meter. According to research, individual residences
account for 80% of theft globally, while commercial and
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industrial properties account for 20% [2]. Electricity theft is
a massive problem in the current electricity grid, resulting in
significant financial loss. It costs $6 billion a year in the United
States, $173 million in the United Kingdom. A loss of roughly
$100 million each year occurs in Canada. The losses have
far more significant effects on developing countries [3]. To
mitigate this problem, electricity theft needs to be detected.
Many studies have been conducted to identify electric theft
utilizing various approaches such as machine learning, deep
learning, and others.

There have been quite a few researches on electricity theft
detection in Smart Grids, mainly using AMI (Advanced Meter-
ing Infrastructure) [4]–[7] and various ML (machine learning)
techniques [8]–[10]. However, beyond the advantage of smart
meters, the research works involving electricity theft using
ML have yet to be established in the scientific community
because the data obtained from concerned authorities are
neither clean nor diverse enough to introduce many features
while applying ML algorithms. The lack of features and
presence of erratic and unmethodical data pose difficulties
in applying ML algorithms. Razavi et al. [11] has reported
the impact of using various machine learning (ML) models
in the case of six different attack types in a smart grid.
They developed a feature engineering framework based on
a Finite Mixture Model clustering model coupled with an
evolutionary Genetic Programming method, and their approach
is based on the AMI. Sasirekha et al. [2] used appropriate
machine learning methods, such as decision tree and random
forest driven SVM, to estimate the anticipated electricity
consumption of distribution level customers. However, he only
showed a prediction accuracy of RF and DT-based SVM to be
84.4%, 88.52% respectively. The K-nearest neighbors (KNN)
classifier was chosen in [1] because of its speed and simplicity;
nevertheless, the system was able to identify power theft with
only a 91.00% accuracy. The multitask feature extraction fraud
detector (MFEFD) is a deep-learning-based model for identi-
fying electricity theft in smart metering infrastructure. Hu et al.
[12] claimed that MFEFD’s strong feature extraction capacity
was due to its deep structure and high nonlinearity. MFEFD
was trained in a semisupervised way, allowing it to use both
unlabeled and labeled data, overcoming the challenges of a
lack of data resources for power distribution system fraud
detection.

In this work, we have proposed an ensemble approach
(IRFD) to identify non-technical losses such as power theft
or fraud using feature distinction and machine learning ap-
proaches. Machine learning classifiers with a novel feature
engineering combination are used in our approach. The dataset
is obtained from the Tunisian Company of Electricity and
Gas (STEG) [13]. We have pursued the approach of cleaning
and categorizing the data before applying the ML algorithms.
To begin our research, the data is preprocessed to include
the features, and a significant number of new features are
generated. This feature creation allows the machine learning
algorithm to learn more quickly and readily from the supplied
data to anticipate fraud instances. After that, ”Level Encoding”

is used to transform the categorical data into numerical data.
Furthermore, the ”dropna” function is used to impute the
missing value from the dataset. ”StandardScaler” is then
applied to scale the features, and ”Isolation Forest (IF)” is
utilized to identify and eliminate anomalies in the data in order
to enhance the quality. After that, The data balancing is then
carried out using ”SVMSMOTE,” which focuses on detecting
new instances of minority class near borderlines using SVM.
In addition, to improve the model’s accuracy. Recursive Fea-
ture Elimination with cross-validation (RFECV) is employed
for feature selection to determine the most impactful features
responsible for detecting fraudulent cases. In our research,
70% of the data is set aside for training, 20% for testing, and
10% for validation purpose. Following that, we have utilized
the ”Random Forest (RF)” in our method to identify energy
theft and observed a substantial improvement in the evaluation
metrics for detecting electricity fraud. Finally, a compari-
son of several machine learning classifiers such as Artificial
Neural network (ANN), Gradient Boosting Classifier (GBC),
K-Nearest Neighbor (KNN), Logistic Regression (LR), and
Extreme Gradient Boosting (XGBoost) along with Random
Forest (RF) are performed to demonstrate the efficacy of
these classifiers and choose the best one. Also explored is the
effect of utilizing feature distinction techniques like Recursive
Feature Elimination with cross-validation (RFECV) and IF in
the proposed model for the aforementioned algorithms.

II. METHODOLOGY

In this section, we have explained the overall architecture
that detects non-technical electricity theft. On a larger scale,
our proposed framework mainly incorporates two main stages,
data pre-processing and the machine learning pipeline.

A. Data Preprocessing

Data preprocessing entails converting unstructured data into
well-formed data sets. Raw data is frequently incomplete
and formatted inconsistently. Data preprocessing ensures the
dataset is prepared for interpretation and can be parsed by
machine learning algorithms.

At first, we ensure that all of the data are of the same type
of variables; for that, we have used ’Label Encoding’. It is one
of the most standard approaches for dealing with categorical
variables. Label encoding is the process of transforming cate-
gorical data into machine-readable numeric form. A numeric
value has been substituted between 0 and the number of classes
minus 1 for the category value like, if a categorical value has
four unique classes, then the numeric values will be (0,1,2,3).
To remove the missing values, row-wise/column-wise (such
as Null/NaN/Nat) from the dataset, pandas’ default function
”dropna” has been used.

B. Machine Learning Pipeline

This section emphasizes the robust feature engineering
methods and machine learning models to classify and predict
the losses and reduce the misuse of electricity data more
accurately and effectively. 70% of the data are used for
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Fig. 1. Proposed Methodology

training, 20% for testing, and 10% for validation purpose. The
overall methodology of our proposed model is illustrated in
Figure 1

1) Anomaly Detection with Isolation Forest: Isolation for-
est is one of the finest ways for detecting anomalies in
high-dimensional data sets [14]. It is a tree-based method
specifically developed to find outliers. It is based on the
concept of creating a random forest. Existing data is used to
make decisions. The decision tree grows at random with each
decision made. At each node, a feature is chosen at random.
To split the dataset in half, a random threshold value (between
the minimum and maximum) is also chosen. As the process
progresses, each observation becomes increasingly isolated
from the others. Anomalies are data that differ significantly
from the rest of the data. As a result, they are segregated in
fewer steps than when observed usually. Thus, to make data
easier to analyze and learn from, we have applied the isolation
forest method in our research.

2) Imbalanced Class Distribution using SVMSMOTE: Im-
balanced class distribution is such a prevailing problem. It
is a case where the number of observations in one class is
considerably smaller than the number of observations in the
other classes, which consequently causes inaccurate and biased
ML models. To surmount this, we have adopted SVMSMOTE.
It is a variant of Synthetic Minority Oversampling Technique
(SMOTE) [15], [16] algorithm based on a Support Vector
Machine (SVM) algorithm to identify samples to be used
in the formation of new synthetic samples. Its forerunner,
SMOTE is a common oversampling strategy that balances
class distribution by synthetically generating new minority

class instances along with directions from current minority
class examples towards their nearest neighbors. SVMSMOTE
employs Support Vector Machine to generate new minority
class instances by interpolating around borderlines, assisting
in establishing class boundaries.

After that, we have applied the StandardScaler as a feature
scaling method on our dataset. Being one of the most im-
portant steps during data preprocessing, it is a standardization
technique to scale the independent features to bring them in
the same fixed range. That’s why, the mean is set to 0 and the
data is scaled to unit variance. Given the data distribution, the
mean value will be removed from each value in the dataset,
which will then be divided by the whole dataset’s standard
deviation. Furthermore, in the case of multi-variate data, this
is done independently feature-wise for each column of the
data.

3) Feature Selection using RFE with Cross Validation:
Moreover, in order to distinguish important features that
will represent the dataset well enough and be contributory
to the ML algorithm, excluding irrelevant, redundant, and
noisy features, we have utilized Recursive Feature Elimination
with cross-validation (RFECV). It is a wrapper-type feature
selection algorithm [17].

RFE uses a supervised learning estimate that has previously
been fitted to all features using data. The coefficient associated
with each feature is then taken into account. The feature with
the smallest absolute coefficient value is deemed the least
significant, and so on. The least important coefficient is then
removed from the list of features, and the model is rebuilt
using the remaining features. It is preferable to remove one
feature at a time since the coefficient values of other features
change when the model is rebuilt. It rebuilds the model with
each iteration, removing the least significant feature(s), and
repeating the process until it only has the most significant
features, and it turns out to be 95 for our dataset. After that, it
rates features based on how long they took to be eliminated.
The highest rank is given to the feature that was deleted first,
and so on.

III. IMPLEMENTATION & PERFORMANCE EVALUATION

This section defines the performance metrics that are used in
this study to evaluate all classification models in terms of non-
technical electricity fraudulent data. We have used evaluation
metrics such as, Precision, Recall, Accuracy, F1-Score to show
the experimental results.

Precision =
True Positive

True Positive+ False Positive
(1)

Recall =
True Positive

True Positive+ False Negative
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1− Score = 2× Precision×Recall

Precision+Recall
(4)

Our proposed method consists of different modules. This
model has been developed on a machine having OS Windows
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10, 512GB SSD, Core i7-10750H CPU @2.60GHz, 16GB
RAM, and Nvidia Geforce GTX 1660Ti GPU. The system
has been developed in Python 3.7, in which numpy, scikit-
learn, tensorflow, and other packages are used to implement
this method.

A. Outlier Detection & Removal

We have initially processed the raw data set for integration
into the outlier identification model. as previously stated in
Section II. At first, the Label encoder transforms all category
information into numerical values. Then, all the features are
normalized using StandardScaler. Some characteristics showed
much better distribution after the scaling than in the previous
one, as seen in Figure 2.

Fig. 2. Data Distribution of Sample Features after Feature Scaling

Data is subsequently adapted to the Isolation Forest model.
Isolation forest separates each point in the data, and an
anomalous point is separated in a few steps, with specific,
nearby points taking much more steps towards separation. If a
normal instance exists, it assigns a value of 1 to an instance;
otherwise, -1 is assigned if it exists. For roughly 5% of our
dataset, we have categorized anomalies based on isolation
forest. Once the anomalies have been detected, we eliminated
them from our datasets to enhance classification precision. To
illustrate the outcome, we have normalized and adjusted the
measurements to PCA to decrease the number of dimensions
and then plotted them in 3D, highlighting the anomalies in
Figure 3.

Fig. 3. 3D Scatter Plot of Outlier Detection

B. Data Balancing using SVMSMOTE

After we have detected and deleted outliers using Isolation
Forest from our dataset, we have evaluated whether our

dataset is balanced or not. However, the dataset is significantly
unbalanced, with 6,765 instances, of the 11,340 cases where
fraudulent cases are discovered, 5.8 percent of the total cases
displayed in figure 4a. We have used Borderline-SMOTE
(SVMSMOTE) to handle a randomly selecting minority class
instances, replacing them, and adding them to the training data
set and SVM’s method identifies misclassified cases on the
minority class decision boundary along the lines that connect
with interpolation each of the vectors supporting minority
classes with their nearest neighbors. The number of non-
fraudulent and fraudulent instances turns out to be 77428 for
both 0 and 1 as shown in Figure 4b.

Fig. 4. Data Representation of ”Target” Feature (0 represents Fraud, 1
represents Normal)

C. Feature Selection using RFECV

We were challenged to cope with a reasonably broad range
of data. Features that are not relevant might increase the run-
time of the system while giving disappointing results. We have
utilized the Recursive Elimination Feature to choose a subset
of the most important features in our data set (RFE). You can
pick these characteristics (columns) more or more important
to predicting the target variables in a training data set. Fewer
capabilities make it easier for machine learn algorithms to
work with less time or space complexity. Some algorithms
may be misled by irrelevant inputs, leading to worse prediction
efficiency. There are 104 characteristics in our dataset. All
characteristics do not contribute to the classification equally.
After performing Recursive Feature Elimination with Cross-
Validation Technique (RFECV), 95 out of 104 features have
been identified as the most relevant. We have utilized the
approach of the ”Stratified 10-Fold cross-validation” technique
for cross-validation to verify that in the initial data, training
set and test set, the corresponding proportion is the same.

D. Applying Machine Learning Algorithms

In this research, we have applied several machine learn-
ing algorithms such as K-Nearest Neighbor (KNN), Random
Forest (RF), Logistic Regression (LR), Gradient Boosting
Classifier (GBC), XGBoost Classifier (XGB), AdaBoost Clas-
sifier (ADA), and Artificial Neural Network (ANN). At first,
a comparison of accuracy is made among these algorithms
after preprocessing the dataset. After that, we have observed
the classification accuracy of electricity fraud detection after
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eliminating irrelevant features by RFECV, and the accuracy
has improved significantly for the classification algorithms
except for Logistic Regression as illustrated in I. The proposed
method also demonstrates improved performance in terms of
Precision, Recall, and F1-score values. For a better view, a
graphical representation of accuracy for all the algorithms
applied has been illustrated in Figure 5.

TABLE I
ACCURACY, PRECISION, RECALL, F1-SCORE

Classifiers Accuracy Precision Recall F1-Score
(%) (%) (%) (%)

KNN 85 96 88 92
RF 94.03 96 98 97

After LR 83.87 97 86 91
Pre- GBC 92 96 86 91

processing XGB 94.2 96 98 97
ADA 88.98 96 92 94
ANN 90 96 93 95
KNN 95.87 98 94 96

After RF 97.06 96 98 97
Feature LR 80.45 78 86 81

Selection GBC 93.22 91 95 93
(RFECV) XGB 96.96 96 98 97

ADA 90.21 89 92 90
ANN 93 94 92 93

Fig. 5. Bar Chart of Classification Accuracy

1) Result Analysis on the Preprocessed Dataset: In the
methodology section, we have mentioned that we have re-
sampled the dataset using SVMSMOTE and removed the
anomalies on the dataset using the Isolation Forest algorithm.
From Table I, we observe that the algorithms KNN, RF, LR,
GBC, XGB, ADA and ANN have accuracy of 85%, 94.03%,
83.87%, 92%, 94.2%, 88.98% and 90% respectively for the
preprocessed dataset. Among the classifiers, Extreme Gradient
Boosting Classifier (XGB) has the highest accuracy of 95%
among other algorithms, and Logistic Regression (LR) has the
lowest accuracy of 83.87%. In contrast, LR has obtained the
best precision rate of 97%. Both RF and XGB have attained
the highest recall and F1-Score of 98% and 97%. In the case

of ANN, we have implemented this algorithm with 150 epochs
and a batch size of 20. We also have evaluated the loss and
accuracy after implementing ANN in our model. The loss was
high initially but started reducing after a certain period, and
the accuracy was almost constant throughout the epochs as
illustrated in Figure 6a.

Moreover, to evaluate the performance of our proposed
model, the Receiver Operating Characteristic (ROC) curve of
all the classifiers for the preprocessed dataset is shown in
Figure 7, where XGB and RF have better area under the ROC
curve of 0.85 and 0.849 respectively among other algorithms.

Fig. 6. Loss and Accuracy Plot for ANN

Fig. 7. ROC Curve for Machine Learning Algorithms (After Preprocessing)

2) Result Analysis after Feature Selection: Using the Re-
cursive Feature Elimination with cross-validation (RFECV)
technique, we have removed the irrelevant features to improve
the classification accuracy of the machine learning algorithms.
We observe that the electricity fraud detection model’s clas-
sification accuracy has improved substantially after applying
RFECV accuracy of 95.87%, 97.06%, 93.22%, 96.96% and
90.21% respectively for KNN, RF, GBC, XGB, ADA except
for Logistic Regression (80.45%). The proposed method shows
improved performance in terms of Accuracy Precision, Recall,
and F1-score values. Table I shows that Random Forest (RF)
classifier attains the highest accuracy, precision, recall, and
f1-score of 97.06%, 96%, 98%, and 97% respectively and
outperforms other classification algorithms applied, whereas
the accuracy rate (96.96%) of XGB also shows a promising

Authorized licensed use limited to: Penn State University. Downloaded on June 17,2025 at 15:19:00 UTC from IEEE Xplore.  Restrictions apply. 



result. After analyzing the precision rate, it can be observed
that KNN has the highest precision rate of 98% than other
classifiers. Apart from these, ANN gives better performance
after feature selection in terms of accuracy with 93% than that
of the preprocessed dataset as shown in Figure 6b.

With the area under the ROC curve, we can also evaluate the
changes before and after applying the feature selection module,
RFECV as shown in Figure 8. Here, RF and XGB have
attained better AUROC scores of 0.993 and 0.992 respectively
than other classifiers.

Fig. 8. ROC Curve for Machine Learning Algorithms (After Feature Selec-
tion)

IV. CONCLUSION

IRFD, a predictive machine learning technique with unique
feature engineering combination for detecting electricity theft
is demonstrated in this study. To detect and remove outliers
and evaluate the efficiency of our model, we have combined
Recursive Feature Elimination with cross-validation (RFECV)
and Isolation Forest (IF) in our proposed method as a novel
approach. After that, Random Forest (RF) classifier is used in
this case to predict electricity theft. Finally, the efficiency of
our model is evaluated by comparing it to a variety of machine
learning classifiers such as GBC, AdaBoost, KNN, LR, ANN,
and XGBoost after and before feature engineering. The result
section shows that before applying feature engineering, XGB
has the best output with 94.2% accuracy. On the other hand,
after applying feature engineering techniques, except LR, all
other classifiers have surpassed their performance in terms
of accuracy, precision, recall, and F1-score. The result also
shows that RF has the best output with 97.06% accuracy after
employing feature engineering methods.

The findings of this research could aid the power division
in taking preventive measures to reduce non-technical losses
such as electric theft. This experience can be replicated in
the future by gathering large dataset with more features from
power plants and invoices from the consumers in Bangladesh,
as we have done with Tunisian data to find out and reduce
the losses due to the manipulations of meters by consumers

or for other circumstances, thus by helping evaluate their
efficiency at the application level in this domain. Furthermore,
a different combination of feature engineering methods with
deep learning approaches can also be implemented.
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