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Abstract—Preliminary attempts at incorporating the critical
role of astrocytes—cells that constitute more than 50% of
human brain cells—in brain-inspired neuromorphic comput-
ing remain in infancy. This paper seeks to delve deeper into
various key aspects of neuron-synapse-astrocyte interactions to
mimic self-attention mechanisms in Transformers. The cross-
layer perspective explored in this work involves bioplausible
modeling of Hebbian and presynaptic plasticities in neuron-
astrocyte networks, incorporating effects of non-linearities and
feedback along with algorithmic formulations to map the neuron-
astrocyte computations to self-attention mechanism and evalu-
ating the impact of incorporating bio-realistic effects from the
machine learning application side. Our analysis on sentiment
and image classification tasks (IMDB and CIFAR10 datasets)
highlights the advantages of Astromorphic Transformers, offering
improved accuracy and learning speed. Furthermore, the model
demonstrates strong natural language generation capabilities on
the WikiText-2 dataset, achieving better perplexity compared to
conventional models, thus showcasing enhanced generalization
and stability across diverse machine learning tasks.

Index Terms—Astromorphic Transformer, Tripartite Synapse,
Hebbian Plasticity, Presynaptic Plasticity, Self-Attention

I. INTRODUCTION

ASTROCYTES, a type of glial cell, play a critical role
in brain function, encompassing various processes such

as homeostasis, metabolism, and synaptic regulation [1]. As-
trocytes detect and regulate synaptic activity in the tripar-
tite synapse through interactions with pre- and postsynaptic
neurons. Investigating their impact on neural computation
is currently an active research field in neuroscience and
underscores the critical need to move beyond the neuro-
synaptic perspective of current Artificial Intelligence (AI)
systems. Recent experimental findings on neuron-astrocyte
interactions and modulation have led to significant progress
in computational neuroscience, enabling the development of
models that incorporate neuron-astrocyte interactions within
neural networks [2], [3]. Astrocytes have been found to
modulate bursting in neural circuitry through the release of
gliotransmitters, which have an impact on neuronal excitability
and synaptic plasticity [4], [5]. Astrocytes possess the ability
to encode information through calcium signaling and regulate
information processing, thereby actively engaging in neural
computation at the tripartite synapse level. Additionally, astro-
cytes possess inherent capacity as memory components [6], [7]
and plasticity regulators that are capable of facilitating local
sequential learning [8], [9].

Preliminary attempts at incorporating the critical role of
astrocytes in brain-inspired neuromorphic computing have
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started in earnest. Neuromorphic systems [10] are bioplausible
AI models that attempt to emulate neuronal and synaptic oper-
ations with a higher degree of bio-fidelity to tap into the huge
energy efficiency of the brain. Such systems are temporal and
event-driven, where computation occurs through transmission
of sparse spiking events between neurons, thereby offering
the potential of orders of magnitude power efficiency when
implemented on neuromorphic platforms [11]. However, astro-
morphic computing that encapsulates the features of astrocytic
regulation in neuromorphic systems still remains in infancy,
with works focusing primarily on the integration of astrocyte
functionality with Spike-Timing-Dependent-Plasticity (STDP)
mechanisms [12]–[15]—an unsupervised learning framework
that remains limited to shallow networks and simple tasks [16].
Other attempts also suffer from the pressing issue of scalability
to complex tasks [17].

This work is based on a recent study [18] that has shown
promise at emulating the self-attention mechanism in trans-
formers [19] using a simple two-layered network involving
neuron-astrocyte interactions. The ability to design Astromor-
phic Transformers is therefore highly relevant in the current era
of Large Language Models (LLMs), such as BERT [20] and
GPT [21], paving the pathway for designing explainable trans-
formers from a neuroscience perspective as well as addressing
scaling challenges for utilizing the computational role of as-
trocytes in neuromorphic computing. However, as we illustrate
in this work, prior work has neglected various key aspects of
bi-directional astrocytic signalling, feedback, and non-linear
temporal behavior—all of which are key to addressing the fun-
damental mapping of self-attention mechanism to astrocyte-
neuron interactions along with providing insights on whether
such intrinsic non-linear dynamics and plasticity modulation
enable better learning capabilities from the application side.
The distinguishing feature of this work, therefore, lies in
the neuroscience-algorithm-application co-design perspec-
tive seeking to answer the following questions: (i) Theoretical
neuroscience: What aspects of astrocyte functionality should
be included in neural architectures to better explain the self-
attention mechanism in transformers? (ii) Algorithm: Can
we map key algorithmic modules, like the relative positional
information encoding of tokens, to astrocytic interactions by
drawing qualitative inspiration from theoretical neuroscience?
(iii) Application: What is the impact of incorporating such
dynamic temporal bioplausible transformers from the machine
learning application perspective?

II. RELATED WORKS AND MAIN CONTRIBUTIONS

Spiking neural networks (SNNs), inspired by biological
neurons, have garnered attention for their ability to process
temporal data efficiently through sparse, event-driven com-
putation and communication [22], [23]. Recent works have
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explored enhancing the computational efficiency of SNNs,
including incorporation of advanced learning techniques [25],
improving network robustness through hybrid models [26], and
addressing energy efficiency challenges [27], [28]. While these
advances contribute to energy-efficient and robust learning
systems, they remain focused on spike-based computation and
do not fully leverage neuron-astrocyte interactions, which is
the core focus of our work.

Understanding the role of astrocytes in neuromorphic com-
puting, especially from the algorithm perspective, is relatively
nascent. While hardware implementation of astrocyte function-
ality in CMOS [29], [30] as well as post-CMOS technologies
[31] have been explored, algorithm-level works exploiting
the role of astrocytes and leveraging their computational role
have largely remained limited to self-repair functionality of
faulty neural network hardware [12], [14], [32], [33]. These
works are mainly inspired by the fact that astrocytes, through
their synaptic plasticity regulation and feedback mechanisms,
enable neurons to fire at a baseline ideal frequency. This
property can be utilized to mitigate neuromorphic hardware
non-idealities with stuck-at-faults and drift effects [14]. How-
ever, such approaches are still limited to single-layered unsu-
pervised networks where astrocyte functionality is integrated
with STDP learning mechanisms. Recent studies have also
examined the influence of astrocytes on learning [9], working
memory [6], energy minimization in neural networks [34],
robotic locomotion control [35], structure learning [17], among
others.

Building upon recent works [18] at emulating self-attention
module in transformers through astrocyte-neuron interactions,
we develop a computational framework that encapsulates key
aspects of temporal non-linearities and feedback enabled by
astrocytes and underscore the importance of incorporating such
bioplausible effects through a comprehensive evaluation of
Astromorphic Transformers on a benchmark evaluation set.
Our work expands the computational capabilities of astrocyte-
neuron network architectures equipped with plasticity, for the
first time, to a broad category of sequential tasks.

III. METHODOLOGY

A. Transformers

Vanilla transformers [19] for classification tasks usually
consist of an encoder block processing the provided key(K),
query(Q), and value(V ) generated from the input token em-
beddings X (words in language tasks, pixels in vision tasks,
etc.). Appendix A in the supplementary material illustrates
the conventional configuration of a transformer, featuring a
block referred to as “Multi-Head Attention” that produces
the contextual association among the provided inputs. The
multi-head attention block in transformers uses a self-attention
mechanism for multiple input heads, allowing the model to
allocate varying importance to individual tokens, focusing on
salient features for precise output in specific contexts.

The transformer implements auto-regressive attention by
computing the dot product of key and query and then multiply-
ing the resulting scalar with the corresponding value derived
from the input token. Implementing the softmax function (a

type of distribution function) atop the dot product of key
and query (to enforce attention over the tokens) increases
the order of complexity, a predicament that can be alleviated
by the use of linearized attention [36]. Linearized attention
exploits the distributive property of matrix multiplication,
resulting in lower complexity for self-attention computation.
More details can be found in Appendix B of the supplementary
material. From the linear attention-based transformer (linear
transformer) perspective [37], the transformer equations can
be defined in the following form:

SA(X) =
ϕ(Q)(ϕ(K)TV )

ϕ(Q)[
∑t=N

t=1 ϕ(kt)]T
(1)

Y = LayerNorm(SA(X) +X) (2)

logits = Softmax(Linear(LayerNorm(FFN(Y ) + Y ))) (3)

From Equations 2 and 3, we can see that the output of self-
attention is Y , which undergoes layer normalization after
being augmented with residual connections from the input
layer. The transformer determines the final output probabil-
ities, denoted by logits. FFN stands for a Feed Forward
Network and there is a ϕ(.) feature map that corresponds to
a positive similarity function. When two such functions are
multiplied, the normalized dot product maps to a distribution
function [38] (i.e., softmax). According to [37], ϕ(.) can be
defined by Equation 4. Here, the activation function includes
elu(x), which stands for exponential linear unit and is utilized
for efficient and precise learning [39].

ϕ(x) = elu(x) + 1 (4)

In the next section, we discuss the tripartite synapse model and
aspects that will be necessary in constructing Astromorphic
Transformers.

B. Tripartite Synapse Dynamics

Astrocytes play a crucial role in the modulation of synaptic
plasticity by releasing chemical signals that regulate the effi-
cacy of synaptic connections. This phenomenon plays a role in
modulating the strength and duration of synaptic connectivity
and is crucial for maintaining the health of neurons. The
depiction of the tripartite synapse in Fig. 1, which incorporates
astrocytes, is a biologically plausible representation that em-
bodies a multifaceted and evolving comprehension of synaptic
signaling within the brain.

1) Astrocyte dynamics: The tripartite synapse’s dynamics
are based on Li and Rinzel Ca2+ dynamics [40], gate-
keeper model [41], Nadkarni and Jung model [42], [43],
and bidirectional study on astrocytic glutamate binding to
postsynaptic neurons (AN model) [44]. According to the
biophysical models, it is observed that an action potential
(AP) is generated by the presynaptic axon through the release
of neurotransmitters. Neurotransmitters bind to postsynaptic
dendrites, causing depolarization. This leads to the release of
2-Arachidonoylglycerol (2-AG) from postsynaptic neurons to
type 1 Cannabinoid Receptors (CB1Rs) on the presynaptic
terminal. This process is called Depolarization-induced Sup-
pression of Excitation (DSE) and depresses the continuous
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Fig. 1. A model of synaptic communication in the brain. The tripartite
synapse consists of presynaptic neurons, postsynaptic neurons, and astrocytes.
Astrocytes detect neuronal activity and respond bidirectionally by emitting
gliotransmitters, thereby modulating the intensity and duration of synaptic
communication.

release of neurotransmitters by inhibiting presynaptic neurons
[45]. Neurotransmitter release also involves binding 2-AG to
CB1Rs on an astrocyte, enveloping the synapse, and increasing
Inositol 1,4,5-trisphosphate (IP3) levels. IP3 facilitates the
release of calcium ions into the cytoplasm, thereby increasing
calcium concentration. Three currents, Jchannel, Jleak, and
Jpump, are introduced to model the rate of change of calcium
concentration inside the astrocyte [40]. When calcium con-
centration crosses a threshold, astrocytes discharge glutamate,
which binds to presynaptic group I metabotropic Glutamate
Receptors (mGluRs), creating a process called eSP (Indirect
Feedback) from the astrocyte to the presynaptic neuron [46].
The comprehensive description of the computational model
(Equation 5 introduces the basic equation of the model) can
be found in the works of [44], [47], [48], which are outlined
in Appendix D in the supplementary material.

d(Ca2+)

dt
= Jchannel + Jleak − Jpump (5)

2) Neuron dynamics: In this work, we consider the passive
Leaky Integrate and Fire (LIF) dynamics to describe the
neuron firing process, which is described in Equation 6:

τm
dv

dt
= −v(t) +Rm

M∑
i=1

Iitotal−syn (6)

where τm represents the membrane time constant, v represents
the membrane potential, and Rm represents the membrane
resistance. Iitotal−syn denotes the total synaptic current at the
ith synapse. M is the number of synapses connecting to the
corresponding neuron. Total synaptic current at the ith synapse
can be defined as the summation of two currents, namely,
Synaptic Current, Iisyn and Slow Inward Current, SIC(t) in
Equation 7:

Iitotal−syn = Iisyn + SIC(t) (7)

Iisyn is the intrasynaptic current, which varies linearly with
the amount of neurotransmitters present in that synapse at any
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Fig. 2. The neural network architecture showing the three layers. As tokens
are presented to the network as a d dimensional vector, there are d neurons
in both the input and output layers. The hidden layer has m neurons. Solid
lines indicate active operations; therefore, Hneuron and Hastro are learned
during write mode but utilized during read mode.

time, t (Iisyn = Aseyi(t), where Ase and yi(t) represent the
absolute synaptic efficacy and the amount of neurotransmitter
discharged by the synapse at a given time t, respectively).
Thus, Isyn depends on the direct feedback (corresponds to
DSE) as direct feedback is modulated by the amount of
neurotransmitters between the pre- and postsynaptic neuron.
On the other hand, the extrasynaptic Slow Inward Current
(SIC(t)) is generated when astrocyte-released glutamate in-
teracts with extrasynaptic NMDARs (located in postsynaptic
neurons) [49]. To elaborate, the activation of astrocytes leads
to the release of glutamate from these cells. Upon its release,
glutamate interacts with NMDARs located on the postsynaptic
neuron, resulting in the emergence of a distinct form of current
known as Slow Inward Current (SIC(t)) [44]. The details
of the mathematical modeling of SIC(t) can be found in
[44]. Next, we develop a network architectural framework to
mimic the self-attention mechanism in transformers using the
astrocyte and neuron dynamics described herein and evaluate
the impact of inherent non-linearities and feedback.

C. Neural Network Emulating Self-Attention

Self-attention is a fundamental component of all transformer
models. Based on prior works of mimicking self-attention
by astrocytes [18], we adopt a network topology as shown
in Fig. 2. The neural network architecture comprises three
distinct layers, namely input layer, hidden layer, and output
layer. There exist two distinct operational modes for the
aforementioned neural network: (i) write mode and (ii) read
mode. Upon presentation of the tokens (xt ∈ R1×d: which
may include word embeddings and image embeddings) to the
input layer, the write mode is initially employed, followed
by the read mode to generate the outputs. In write mode, we
encode information into the network by means of keys and
values, whereas, in read mode, we retrieve the information by
providing queries.

During the write mode, the input layer sequentially transmits
the keys (kt = xtWK ; WK ∈ Rd×m) for each token to the
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hidden layer and the values (vt = xtWV ; WV ∈ Rd×d)
to the output layer. The hidden layer neurons introduce a
non-linearity within the system by activating a feature map,
denoted as ϕ(.), on the transmitted keys. The use of ϕ(.)
reduces the computational complexity and memory usage
inspired from the linearized attention mechanism. More in-
formation on the reduction of the order of complexity is
discussed in Appendix B (with Fig. S2 illustrating the idea)
in the supplementary material. A presynaptic neuron in the
hidden layer (ht ∈ R1×m) is intricately connected with an
astrocyte and an output layer (lt ∈ R1×d) neuron, forming
a tripartite synapse. Similar to the mechanism by which the
presynaptic neuron stimulates the astrocyte through the release
of neurotransmitters, in this context, the astrocyte is being
activated through the transmission of keys (kt ∈ R1×m)
from neurons in the hidden layer. The write mode can be
mathematically expressed as in Equation 8:

ft = xt

ht = ϕ(ftWK) = ϕ(kt)

lt = ftWV = vt

(8)

In order to establish the read mode equations, it is necessary
to first formulate the neural plasticities that occur among the
components of the tripartite synapse. Moreover, our work
aims at exploring strong bioplausible correlations in modeling
such plasticities, which ultimately influence our neuroscience-
algorithm-application co-design analysis. In a subsequent sec-
tion, we will examine the read mode, which is responsible for
retrieving the encoded information.

D. Mathematical Formulation of Plasticity

1) Hebbian Plasticity: Hebbian plasticity is characterized
by the sequential adjustment of synaptic weights in accordance
with the interconnection pattern between two neurons (pre-
and postsynaptic neurons) at the synapse. Previous studies [18]
have exclusively focused on the plasticity occurring between
two neurons, neglecting non-linearities and the plasticity that
may occur between astrocytes and postsynaptic neurons, which
is also involved in the learning process.

Contribution I: In the context of Hebbian plasticity,
we underscore the importance of the addition of astrocyte-
postsynaptic neuron connected Hebbian-inspired learning
along with inherent non-linearities. To elaborate, the synaptic
weights (Hneuron) that establish connections between the
presynaptic and postsynaptic neurons are acquired through
Hebbian plasticity during the write mode. This learning occurs
due to the connection between pre- and postsynaptic neurons,
which can be mapped to the synaptic current (Isyn) from
the neuroscience perspective. As discussed previously, Isyn is
modulated by DSE, so Hneuron is inspired from the direct
feedback in the tripartite synapse. This leads to Hebbian
plasticity between the hidden layer (presynaptic neuron) and
the output layer (postsynaptic neuron). Hidden neuron outputs
are denoted as ht = ϕ(kt), whereas the output (last) layer
outputs are denoted as lt = vt in the write mode (refer to

Equation 8). Hneuron weights are learned via Equation 9,
where m acts as a scaling factor affecting the learning speed.

Hneuron,t = Hneuron,t−1 +
1

m
hT
t lt (9)

The astrocyte functions as the third constituent in the tripartite
synapse, enabling bidirectional communication with the synap-
tic neurons. Hence, we propose that the connection between
the astrocyte and the postsynaptic neuron also be represented
in this formulation through a learnable weight matrix (Hastro),
in accordance with the Hebbian rule. Equation 10 shows the
learning mechanism of these weights in which the presynaptic
neuron output (ht) is replaced by the astrocytic activity,
represented by wastro, as this connection incorporates the
astrocyte and the postsynaptic neuron. The formulation of
wastro will be considered in the succeeding text.

Hastro,t = Hastro,t−1 +
1

m
wastrolt (10)

The weight, denoted as Hastro, is inspired from the extrasy-
naptic current SIC (refer to the tripartite synapse dynamics
section). According to Equation 7, SIC is added to Isyn
to generate the total synaptic current. Consequently, the two
distinct learnable weights, denoted as Hneuron and Hastro,
are combined to produce the Hebbian weight H = Hneuron+
Hastro.

Astrocytes have a significant impact on the Hebbian weight
due to their inherent non-linearity. A recent study by [17]
introduced an AstroNet model that optimizes neural network
connections through temporal and global regulation mecha-
nisms. The authors found that astrocytes introduce non-linear
effects, which compound the pre-existing non-linearity of
neurons. The concept of Hebbian plasticity is associated with
temporal and global regulation, where the current weight is
influenced by past neuron weights and astrocytic weights. To
map the effect of non-linearity, we consider that the summation
of neuron and astrocyte Hebbian weights undergoes non-
linear activation, ultimately generating the Hebbian weight
(H). As such, we propose the integration of a sigmoid (σ) non-
linearity into the learning process. Thus, the weight H exhibits
the collective Hebbian plasticity of a tripartite synapse, as
elucidated by Equation 11, where K and V correspond to keys
and values of all the N tokens in a single sequence (in matrix
form: K ∈ RN×m, V ∈ RN×d). Assuming initial Hneuron,0

and Hastro,0 from Equations 9 and 10 are both zero, we can
define the Hebbian weight in its matrix form (H ∈ Rm×d) as:

H = σ(Hneuron +Hastro)

H = σ(
1

m
(ϕ(K)TV +WastroV ))

(11)

Next, we consider formulation of the astrocytic activity
parameter Wastro (Note, wastro in Equation 10 is the per-
token representation and Wastro in Equation 11 is the matrix
representation). We note that astrocytic Ca2+ dynamics is a
relatively slower temporal process than the streaming rate of
the input tokens. Therefore, it is expected that the astrocytic
activity should encode relative information among successive
tokens. In this context, we derive inspiration from algorithmic
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formulations of relative positional information of tokens, pop-
ularly used in Vision transformers [50], [51], and map it to the
activity parameter Wastro. The astrocytic activity parameter
is therefore defined to use the edge of the tokens to capture
relative position differences between input elements [50]. The
edge of the tokens considers the pairwise relationships be-
tween input elements in the sense that the input is modeled as
a labeled, directed, fully connected graph. To model astrocytic
activity, we first define the edges between consecutive input
tokens i and j as aij with the help of matrix P ∈ RN×N ,
containing the distance-based relative positional information
between tokens, and D ∈ Rm×m which is a transformed
version of P , achieved through a matrix basis transformation
D = MPMT . In this transformation, M ∈ Rm×N is
a learnable matrix that projects the original N -dimensional
space of positional relationships into an m-dimensional space.
This transformation allows the model to learn an optimal
representation of positional information, potentially reducing
dimensionality if m < N , and capturing complex relationships
between token positions. Mathematically, this transformation
is a linear transformation, specifically a quadratic form, suit-
able for encoding pairwise interactions. Conceptually, this can
be viewed as a learned change of basis, where M defines
a new coordinate system that optimizes the representation of
positional information for the task. The resulting matrix D
encodes the spatial relative distances among tokens, repre-
sented as neuronal activity received by the astrocyte. Based
on D, the edges are formulated as: aij = WrelD, where
Wrel ∈ RN×m is a randomly initialized learnable weight
matrix. To further enhance the efficiency of our model, we
set Wrel = MT . This design choice offers several advan-
tages: First, it reduces the number of learnable parameters,
promoting more efficient training and mitigating the risk of
overfitting, especially in data-limited scenarios. Second, it
encourages the learning of a more compact and generalizable
representation, as the transformation M now serves the dual
purpose of both transforming the positional information (P
to D) and weighting the transformed information for edge
computation (aij = MTD). Finally, this constraint acts as
a form of regularization, guiding the model to learn more
robust and meaningful features by ensuring that the learned
transformation is useful for both representing and processing
positional relationships. The parameter, m, representing the
number of neurons in the hidden layer, is crucial as it dictates
the dimensionality of the learned representation. Its value is
not fixed but rather can be adjusted based on the complexity
of the dataset, allowing the model to adapt its capacity.
Datasets with higher complexity may benefit from a larger
m, providing the model with more representational power,
while simpler datasets might learn effectively with a smaller
m, promoting efficiency and potentially preventing overfitting.
Building on the definition of edges, the astrocytic activity
parameter Wastro ∈ Rm×N (wastro ∈ Rm×1 for per token
form) is defined as:

Wastro = ϕ(aij)
T (12)

where ϕ introduces a non-linearity to capture the temporal
dynamics of astrocytes. While Wrel is learned over time, the
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Fig. 3. As the input spike frequency in the presynaptic neurons increases,
the rate of increase in calcium concentration slows down, thereby exhibiting
a non-linear relationship between Ca2+ ion concentration and input spike
rate.

positional information provided by D ensures that the model
maintains awareness of relative distances among tokens, allow-
ing Wastro to adapt dynamically to the input. Consequently,
Hastro ∈ Rm×d can be considered as a representation of
acquired positional knowledge derived from the input tokens.

2) Presynaptic Plasticity: The plasticity resulting from the
induced calcium response inside the astrocyte due to bidirec-
tional communication between the astrocyte and presynaptic
neurons (hidden layer) can be defined as presynaptic plasticity.
As tokens are sequentially presented to the hidden layer during
the write mode, keys: ϕ(kt) are generated, which can be
mapped to an increasing number of released neurotransmitters
(implying increment in Jchannel as per the computational neu-
roscience model), thereby resulting in elevation of the calcium
concentration within the astrocyte (evident from Equation 5).
Thus, the presynaptic plasticity parameter g can be mapped
to calcium concentration in astrocytes modulated by indirect
feedback (eSP ), and can be expressed as the aggregate of
the inputs (ht = ϕ(kt)) received by the presynaptic neuron.
Equation 13 defines the formulation of the presynaptic plas-
ticity parameter (gt, g ∈ R1×m). Assuming the initial calcium
concentration to be zero (g0 = 0), g can be expressed as:

gt = gt−1 + ht = gt−1 + ϕ(kt) (pertoken form)

g =

N∑
t=1

ϕ(kt) (matrix form)
(13)

Contribution II: Prior work [18] at modelling pre-synaptic
plasticity has not considered the intrinsic non-linear Ca2+

dynamics of the astrocytes in response to increasing firing rate
of presynaptic neurons. Due to the indirect feedback (eSP),
the rate of increase in the release rate of neurotransmitters
gradually reduces in response to an increase in presynaptic
neuron firing over time. Hence, a non-linear relationship exists
between the calcium concentration and the frequency of spikes
received from the presynaptic neuron. We substantiate this
observation by simulating the AN model [44], [47]. The
associated non-linear variation is depicted in Fig. 3 which
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leads us to modify the presynaptic plasticity parameter g as,

g = (

N∑
t=1

ϕ(kt))
α (14)

where the exponent α encodes the degree of non-linearity.
From our computational modeling, we use a value of α =
0.25. The subsequent section elaborates on the read mode
operation, which involves the process of retrieving the in-
formation encoded during the write mode to implement the
self-attention mechanism incorporating our key contributions
towards more bioplausible formulations of Hebbian and presy-
naptic plasticity.

E. Realization of Self-Attention
The self-attention mechanism is realized when the encoded

information is accessed during the read mode to obtain the
activations of the output layer neurons. The hidden layer
neurons receive queries (qt = xtWQ) from the input layer
and access the information that was previously encoded within
the astrocyte. This information is stored via both the Hebbian
weight (H) and the presynaptic plasticity parameter (g) during
write mode. However, during read mode, H is already learned
and not modulated by the transmitted queries from the presy-
naptic neurons, as it is directly connected to the postsynaptic
neurons (output layer). As g is the presynaptic plasticity pa-
rameter, it has no direct connection to the postsynaptic neuron.
Therefore, the information encoded in g has to be retrieved by
the queries transmitted from the hidden layer during read mode
by inducing a calcium response from the astrocytes. In order
to read the calcium response (ct ∈ R1×1) of the astrocyte,
the queries (ht) are scaled by the corresponding presynaptic
plasticity parameters (gt) across all the m hidden neurons
and then summed together. This is depicted in Equation 15,
where the matrix form of the calcium response is defined by
C ∈ RN×1.

ct =
∑
m

gtht (pertoken form)

C = hgT (matrix form)

(15)

Let us define the weight modulating the connection between
the astrocyte and the output layer as P . According to studies
regarding Tumor Necrosis Factor - α (TNF − α), astrocytes
possess the ability to boost synaptic weights in reaction to low
neural activity and diminish weights in reaction to high neural
activity [18] by means of calcium response (neural activity is
proportional to released neurotransmitters). Consequently, it
is possible to infer an inverse correlation between P and the
calcium response (C). Simplifying, this relation (P = 1

C ) is
given by Equation 16. To avoid the computational cost of a full
matrix inversion, we compute the reciprocal calcium response
element-wise by inverting only the non-zero elements of the
diagonal matrix using a mask. This ensures numerical stability
and computational efficiency for large-scale sequences.

P =
1

ϕ(Q)[(
∑N

t=1 ϕ(kt))
α]T

(16)

Given that the presynaptic plasticity modulated weight (P )
is ascertained, we can define the network equations for the

read mode. As seen from Fig. 2, the hidden layer and the
output layer are connected by the Hebbian weight H , and the
astrocyte is imposing another learned weight (from calcium
response) denoted by P onto the existing weight H . Thus
the weights are implemented by the Hadamard (element-
wise: ⊙) multiplication of H and P onto the output layer.
Furthermore, the output layer receives the input (F ) directly
from the input layer modulated by unity weight to implement
the residual connection present in the self-attention module of
transformers. Considering the network architecture, the read
mode network equations can be defined in Equation 17. It
is important to highlight here that during the read mode, the
decoding process occurs in a singular timestep, as opposed
to the sequential nature of the write mode. Hence, all the
parameters for input, hidden, and output layers are represented
in their matrix format (e.g., X ∈ RN×d, h ∈ RN×m,
L ∈ RN×d ).

F = X

h = ϕ(FWQ) = ϕ(Q)

L = h(H ⊙ P ) + F = ϕ(Q)(H ⊙ P ) +X

(17)

In Equation 17, all the parameters are in matrix mode, where
the dimensions are defined as follows: WQ ∈ Rd×m and Q ∈
RN×m (queries). L represents the generated output from the
last layer. The self-attention algorithm is defined when the
network completes a write and read mode, as discussed next.

By substituting the values of H and P from Equations 11
and 16 into Equation 17, the resulting Equation 18 can be
obtained after the write and read mode:

L =
ϕ(Q)(σ(ϕ(K)TV +WastroV ))

m× ϕ(Q)[(
∑N

t=1 ϕ(kt))
α]T

+X

Y = Layernorm(L)

logits = Softmax(Linear(FFN(Y ) + Y ))

(18)

In Equation 18, L implements an identical operation as the
transformer self-attention from Equation 1 (along with the
inclusion of an extra residual connection from the input layer).
Y is the layer-normalized version of L and is further feedfor-
warded through fully connected linear layers to finally obtain
the output probabilities in the form of logits. Thus, with this
implementation, the Astromorphic Transformer is formulated.
The detailed implementation of this process, including neuron-
astrocyte interactions and synaptic modulation, is provided in
Appendix E in the supplementary material, where the pseudo-
code outlines the sequence of operations governing synaptic
plasticity and calcium-mediated attention adjustments in the
Astromorphic Transformer.

IV. RESULTS

Our Astromorphic Transformer is trained and tested on
three different tasks: sentiment classification on the IMDB
dataset [65], image classification on the CIFAR10 dataset
[66], and language modeling on the Wikitext-2 dataset [67].
To date, there has not been any language or vision model
that incorporates transformer architecture in a bioplausible
manner derived from neuron-astrocyte interactions. We report
the following performance for each task:
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TABLE I
PERFORMANCE COMPARISON OF OUR PROPOSED ASTROMORPHIC ATTENTION-BASED TRANSFORMER ARCHITECTURE AGAINST OTHER BENCHMARKS

WITH VARYING DEGREES OF BIOPLAUSIBILITY ON THE IMDB, CIFAR10 AND WIKITEXT-2 DATASETS.

Task Model Implementation Bio-
plausibility

Accuracy(%)/
Perplexity

Sentiment
Classifica-
tion
(IMDB
Dataset)

Memristor SNN [52] Directly trained in SNN domain Yes 84.86%
Memristor SNN [52] Converted from ANN Yes 85.88%
ANN [52] No spiking activity No 86.02%
Spike-transformer [53] Rate-coded approach using spiking neurons Yes 86.36%
Recurrent SNN [54] Presynaptic current-based backpropagation Yes 86.82%
HRNaEMSA biGRU [55] Implements multi-headed attention No 87.3%
HRNaEMSA biLSTM [55] Implements multi-headed attention No 87.4%
CoRNN [56] Coupled oscillators modeled as neurons No 87.4%
LSTM [57] Memristor crossbars mimicking NN No 87.48%
SNN [58] Compute-in-memory macro using SNN Yes 88.15%
UniCoRNN [59] Solves vanishing gradient problem in BPTT No 88.38%
Vanilla Transformer Softmax attention without bioplausibilities No 88.9±0.1%
Linearized Transformer inspired from
astrocytes (Iso-architecture) [18]

Linear attention with no astrocytic non-
linearity or relative positional encoding Yes 88.4±0.1%

Astromorphic Transformer (Our
Model)

Implements astromorphic attention with non-
linearity and relative positional information Yes 88.7± 0.2%

Image
Classifica-
tion
(CIFAR10
Dataset)

BioLeaF [60] SNNs trained by BP-based rules Yes 86.88%
STBP in CIFARNET [61] Spatio-temporal backprop No 89.83%
VGG16-SNN [62] ANN-SNN conversion Yes 91.55%
MS-ResNet [63] SNN oriented ResNet-110 architecture No 91.72%
ANN [64] ResNet-19 (12.63M parameters) No 94.97%
ANN [64] Transformer-4-384 (9.32M parameters) No 96.73%
Spikformer [64] Spikformer-4-384 (9.32M parameters) Yes 95.19%
Spikingformer [61] Spikingformer-4-384 (9.32M parameters) Yes 95.61%
Vanilla Transformer Softmax attention without bioplausibilities No 97.4±0.1%
Linearized Transformer inspired from
astrocytes (Iso-architecture) [18]

Linear attention with no astrocytic non-
linearity or relative positional encoding Yes 96.8±0.2%

Astromorphic Transformer (Our
Model)

Implements astromorphic attention with non-
linearity and relative positional information Yes 97.0± 0.2%

Language
Modeling
(Wikitext-
2 Dataset)

LSTM [67] Traditional RNN-based language model No 65.9
AWD-LSTM [70] Standard LSTM with dropout, regularization No 58.8
AWD-LSTM-MoS [71] Improved LSTM for language modeling No 63.88
AWD-FWM [72] Fast weight memory-based language model No 61.65
Vanilla Transformer Softmax attention without bioplausibilities No 73.4

Linearized Transformer inspired from
astrocytes (Iso-architecture) [18]

Linear attention with no astrocytic non-
linearity or relative positional encoding (does
not converge due to gradient explosion)

Yes 123.3

Astromorphic Transformer (Our
Model)

Implements astromorphic attention with non-
linearity and relative positional information Yes 33.8

• 88.7 ± 0.2% for sentiment classification on the IMDB
dataset, utilizing the non-linearity and relative positional
information in the model.

• 97.0 ± 0.2% accuracy for image classification using an
astromorphic vision transformer on the CIFAR10 dataset.

• A perplexity of 33.8 for language modeling on the
Wikitext-2 dataset using one decoder layer with 6-headed
self-attention.

A. Hardware Specifications & Dataset Details

The Astromorphic Transformer has been executed on a
GPU-based platform running PyTorch. The hardware setup
consists of a 12-core Intel(R) Xeon(R) Platinum 8167M CPU
@ 2.00GHz, with an NVIDIA® Tesla® V100 GPU (16 GB
memory).

The IMDB dataset contains 50, 000 movie reviews labeled
as positive or negative, with each review spanning between
250 and 500 words. The CIFAR10 dataset comprises 60, 000
color images categorized into 10 distinct classes, with each
image having dimensions of 32 × 32 pixels. The Wikitext-2
dataset is a widely used benchmark for language modeling and
natural language generation tasks, containing over two million
words with carefully preserved capitalization, punctuation, and
rare terms.

B. Network Architecture

For the sentiment classification task on the IMDB dataset,
we employ a transformer with an encoder-based architec-
ture, using one encoder layer with 4-headed self-attention. A
dropout layer is applied after the residual connection before
layer normalization.
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For the image classification task on the CIFAR10 dataset,
we implement the CoAtNet transformer architecture, combin-
ing convolutional neural networks (CNNs) with self-attention.
The architecture employs a 3× 3 convolution before creating
patches, followed by an 8-layered encoder stack with 8-headed
self-attention. A patch size of 2 is used on the image inputs.
In addition to the original CoAtNet architecture, we add non-
linearity and average pooling after the encoder layers.

For the language modeling task on the Wikitext-2 dataset,
we use a decoder-based transformer architecture with one
decoder layer and 6-headed self-attention. The embeddings for
this task are generated using the GPT-2 tokenizer, and they
are passed through an astromorphic decoder block with layer
normalization and dropout before the final output.

For all tasks, we use AdamW optimizer and Cross Entropy
Loss for training. For tokenization, the GloVe pretrained word
embeddings [69] are used with 840B tokens, 2.2M vocab
(cased), and 300D vectors for the IMDB dataset, and for
CIFAR10 dataset, pixels are converted to sequences by using
a patch size of 2, while GPT-2 tokenizers are used for the
Wikitext-2 dataset. All hyperparameters for these architectures
are detailed in Appendix C.

C. Performance Evaluation and Comparative Analysis

Table I compares the performance of our Astromorphic
Transformer against both bioplausible neuromorphic models
and non-bioplausible models on the IMDB, CIFAR10, and
Wikitext-2 datasets. We chose not to compare our results
against pretrained transformer models like BERT and GPT, as
these architectures leverage pretraining on large datasets and
use non-bioplausible self-attention mechanisms with highly
customized learnable embeddings. In contrast, our model is
trained from scratch, making it simpler to implement the
astromorphic attention in the transformer framework while
still achieving competitive results. The results, summarized
in Table I, demonstrate the model’s effectiveness compared to
both bioplausible and non-bioplausible architectures.

1) Sentiment Classification on IMDB: On the IMDB
dataset, the Astromorphic Transformer achieves an accuracy
of 88.7%, outperforming several traditional models, including
RNNs, LSTMs, and SNNs. It also exceeds the accuracy
of our implementation of Kozachkov et al.’s proposal [18]:
Linearized Transformer inspired from astrocytes by 0.3%,
which lacks the astrocytic non-linearity and relative positional
encoding central to our model’s design.

2) Image Classification on CIFAR10: In the CIFAR10
dataset, the Astromorphic Transformer attains an accuracy
of 97.0%, outperforming the Linearized Transformer inspired
from astrocytes [18] which achieves 96.8%. Both models
deliver high performance, but the Astromorphic Transformer
shows a slight edge, benefiting from enhanced feature learning
enabled by astrocytic non-linearity and positional encoding,
especially in complex image classification tasks.

3) Language Modeling on Wikitext-2: For language mod-
eling, the Astromorphic Transformer demonstrates superior
performance with a perplexity of 33.8 on the Wikitext-2
dataset. In contrast, Linearized Transformer inspired from
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Fig. 4. Comparative analysis to examine the effects of incorporating non-
linearity and relative positional encoding in the Astromorphic Transformer
on the (a) IMDB and (b) CIFAR10 datasets. The yellow and purple lines in
Fig. (b) are nearly overlapping. The purple curve represents the result of the
model formulated by [18] which performs subpar in both datasets compared
to our proposed Astromorphic Transformer (blue curve).

astrocytes [18] fails to converge due to gradient explosion,
yielding a perplexity of 123.3. This stark difference high-
lights the necessity of incorporating astrocytic non-linearity
for stabilizing training and improving model generalization in
sequential tasks.

4) Ablation Studies in Learning Speed: The impact of
astrocytic non-linearity and relative positional encoding on
learning speed is evident in both datasets. On the IMDB
dataset, the Astromorphic Transformer reaches 85% accuracy
in 16±2 epochs. Without positional encoding, this increases
to 22±2 epochs, and without both features, it takes 54±4
epochs. These results reflect a 27.3% faster convergence
with positional encoding and a 70.4% improvement when
both features are included. In the CIFAR10 dataset, the model
reaches 85% accuracy in 45±3 epochs. Without positional en-
coding, it requires 111±4 epochs, and without either feature,
it stretches to 215±2 epochs, demonstrating a 59.5% faster
convergence with positional encoding and a 79.1% speed
improvement with both features. For Wikitext-2 dataset, the
Astromorphic Transformer converges to the lowest perplexity
within 40 ± 5 epochs, whereas the Linearized Transformer
inspired from astrocytes [18] fails to converge, and the model
crashes due to gradient explosion after a few epochs. Fig. 4
makes it evident that our model significantly outperforms the
Linearized Transformer inspired from astrocytes [18] in terms
of both learning speed and final performance, demonstrating
the crucial role of bioplausible features in improving the
convergence and generalization of transformer models.

V. CONCLUSION

The Astromorphic Transformer advances the frontier of bio-
plausible computing by effectively leveraging neuron-astrocyte
interactions to enhance transformer architectures. Through the
integration of biologically inspired mechanisms, our model not
only matches but also surpasses the efficiency and stability
of existing artificial transformer models. By refining synaptic
modulation with astrocytic feedback and Hebbian plasticity,
we introduce a more adaptive and nuanced attention mech-
anism that proves advantageous in tasks such as sentiment
analysis, image classification, and natural language generation.
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While previous models, like the Linearized Transformer
inspired from astrocytes [18], also utilize neuron-astrocyte
interactions, they lack two critical features: astrocytic non-
linearity and relative positional encoding. These omissions
limit the model’s ability to capture complex relationships in
sequential data, resulting in slower convergence and reduced
accuracy and, in some cases, failure to converge entirely—as
observed in the Wikitext-2 task. Table II compares the vanilla
transformer, linear transformer, linearized transformer inspired
by astrocytes, and the proposed Astromorphic Transformer. It
maps each model to relevant equations and figures, emphasiz-
ing how computational neuroscience equations underpin the
bioplausible mechanisms and advancements of our approach.

TABLE II
COMPARISON OF TRANSFORMER ARCHITECTURES

Model Description
Vanilla Trans-
former

Lacks all bioplausibility, employs softmax attention
instead of feature maps, and has quadratic complexity
for self-attention computation.

Linear Trans-
former [37]

Lacks bioplausibility, employs linear feature maps (re-
placing softmax), achieving linearized complexity for
self-attention (see Fig. S2). Does not incorporate tri-
partite synapse-based formulation.

Linearized
Transformer
Inspired from
Astrocytes
[18]

Incorporates bioplausibility and tripartite synapse-based
formulation (refer to Eqns. 8, 9, 13, 15, 17 and Fig.
1). Employs linear feature maps (no softmax) and
has linearized complexity (Fig. S2). However, it lacks
intricate bioplausible plasticities derived from compu-
tational neuroscience models.

Astromorphic
Transformer
(Our Model)

Fully bioplausible, employs linear feature maps (no
softmax) with linear complexity (Fig. S2) and tripartite
synapse formulation (Fig. 1). Shows a clear depiction
of the astromorphic self-attention network (Fig. 2)
and incorporates astrocytic non-linearity derived from
calcium response (refer to Eqns. 5, 14, 16, and Fig.
3). Introduces astrocytic Hebbian plasticities (Eqns.
10, 11) encoding relative positional information (Eqn.
12) inspired by Slow Inward Currents (Eqns. 6, 7).
Formulates an accurate model of the Astromorphic
Transformer, as detailed in Eqn. 18.

Moreover, our Astromorphic Transformer is catered for
simple implementation in current hardware without any ad-
ditional overhead by leveraging the decomposition of astro-
morphic attention into distinct write and read modes, making
it feasible for traditional computing architectures. Detailed
molecular-level computational modeling is not required for
practical implementation. Instead, macro-models developed
for non-linearity, plasticity, and feedback processes are being
utilized, which represent these dynamics in a simplified yet
biologically plausible way. These macro-models (see Equation
18) should be easily integrable into conventional hardware,
facilitating efficient deployment without needing highly spe-
cialized configurations. Energy-efficient in-memory processing
with CMOS or emerging post-CMOS devices for transformer
architectures [76] can also be potentially utilized for hardware
implementation of Astromorphic Transformers. The Astromor-
phic Transformer can further be improved by incorporating
more complex dynamics from neuroscience, such as astrocyte-
astrocyte communication, which could enable more sophisti-
cated processing and parallelization of plasticity mechanisms.
Additionally, scaling the model to deeper architectures while
leveraging characteristics like memory and learning from

astrocytes may allow the model to adapt to more complex
tasks with long-context sequences.
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SUPPLEMENTARY MATERIAL

A. Appendix A: Transformer Illustration

Transformer employs only encoder architecture for perform-
ing sentiment classification and vision tasks. As illustrated in
Fig. S1, the input embeddings, combined with the positional
embeddings, enter the encoder layer as input tokens. Then key,
query, and value are generated from the input tokens, and after
performing self-attention on them, a skip connection is added
from the inputs, and the overall result is layer normalized and
fed into a feed-forward network. Another add & normalize op-
eration is performed before feeding them into a linear layer and
softmax function to obtain the output probabilities. Sometimes,
there might be more than one encoder layer. For different
tasks, like machine translation and text generation, encoder-
decoder or only decoder-type architecture of transformers can
be used. However, independent of the type of architecture
needed, self-attention is a fundamental mechanism defining
transformer operation. The “Multi-Head Attention” Block has
self-attention modules parallelly running on different heads
obtained from the input embeddings.

Input 
Embedding

Positional 
Encoding

Multi-Head 
Attention

Add & Normalize

K Q V

Feed Forward 
Network

Add & Normalize

X

Inputs

Linear

Softmax

N x

Output 
Probabilities

Encoder Layer

Fig. S1. Schematic representation of the Transformer Encoder architecture,
illustrating the sequential flow of operations. N denotes the number of encoder
layers in the network.

B. Appendix B: Memory Efficient Linearized Attention

Linearized attention involves utilizing feature maps with
lower complexity levels, thereby minimizing memory and

computational resources. As discussed before, the introduction
of non-linearity in biological neurons is facilitated by an
activation function (ϕ(.) = elu(.) + 1) in the hidden layer
neurons. The utilization of this positive similarity feature map
as an activation function characterizes the implementation of
the linearized attention operation as described by Equation
1. The utilization of linearized feature attention results in a
reduction of computational complexity associated with the
computation of the attention score. The advantage of utilizing
feature map-based linearized attention over the conventional
distribution function (i.e. softmax) based self-attention is
demonstrated in Fig. S2. Usual self-attention employs soft-
max as the distribution function; however, the dot product
of Query (Q) and Key (K) poses an O(N2D) complexity,
which overuses the memory. Whereas, in linearized attention,
the computation multiplies Key (K) and Value (V ), yielding
an O(ND2) complexity, properly utilizing the memory and
computational efficiency when token length (N ) is larger
than internal embedding size (D)(We set token embedding
dimension equal to the internal embedding size (d = D) in
this work). Thus, the employment of the linearized feature
map enables the realization of memory-efficient linearized
attention.

φ(.)

φ(.)
(.)

(.)

Q

K

V

Output

O(ND2)

O(N2D)

(.)

(.)

Distribution
Function

Q

K

V

OutputO(N2D)

O(N2D)

(a) Usual Self Attention

(b) Linear Self Attention

Fig. S2. Figure showing the comparison of order of complexity between usual
and linearized self-attention. Distribution function can be mapped to softmax
function used in usual transformers.

C. Appendix C: Hyper-parameter Details

Hyper-parameters for the encoder-type astromorphic trans-
former for IMDB dataset are in Table S1, for the encoder-type
convolution and astromorphic self-attention-based transformer
for CIFAR10 dataset are in Table S2, and for the astromorphic
transformer for Wikitext-2 dataset are in Table S3.

D. Appendix D: Computational Model of Neuron-Astrocyte-
Mediated Synaptic Dynamics

In the context of astromorphic computation, astrocytes play
a pivotal role in modulating synaptic transmission through both
direct and indirect pathways. These pathways, influenced by
endocannabinoid signaling and astrocytic calcium dynamics,
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TABLE S1
HYPER-PARAMETER LIST FOR THE IMDB DATASET.

Hyper-parameters Value Tested Range
Non-linearity parameter α 0.25 0.15-0.4
Model size D 128 32-256
Scaling parameter m 500D (1-1000)D
Sequence length 400 100-600
Learning rate 0.00001 1e−4 - 1e−6

Batch size 64 8-256
Number of epochs 120 40-150
Number of heads 4 1-12

TABLE S2
HYPER-PARAMETER LIST FOR THE CIFAR10 DATASET.

Hyper-parameters Value Tested Range
Non-linearity parameter α 0.25 0.15-0.4
Model size D 256 64-512
Scaling parameter m 500D (1-1000)D
Patch size 2 2-4
Learning rate 0.001 1e−2 - 1e−4

Batch size 32 8-128
Number of epochs 250 80-300
Number of heads 8 2-12

are essential for the dynamic control of synaptic weights in
neuromorphic architectures such as the Astromorphic Trans-
former.

1) Endocannabinoid Dynamics: Endocannabinoids, such as
2-arachidonoylglycerol (2-AG), are released from the postsy-
naptic neuron following depolarization. They serve as retro-
grade messengers, modulating synaptic transmission proba-
bility through both depressive and potentiating effects. The
release dynamics of 2-AG can be modeled as follows:

d(AG)

dt
= −AG

τAG
+ rAG · δ(t− tspike)

where τAG is the decay constant of 2-AG, and rAG is the rate
of 2-AG production after a spike.

2) Direct Signaling Pathway—Depolarization-Induced Sup-
pression of Excitation (DSE): In the direct pathway, 2-AG
binds to CB1 receptors (CB1Rs) on the presynaptic neuron,
reducing the synaptic transmission probability PR. This lo-
calized effect, termed Depolarization-Induced Suppression of
Excitation (DSE), can be described as:

DSE(t) = −AG(t) ·KAG

where KAG is a constant representing the strength of suppres-
sion.

3) Indirect Signaling Pathway—Endocannabinoid-
Mediated Synaptic Potentiation (e-SP): In the indirect
pathway, 2-AG binds to CB1Rs on astrocytes, triggering
intracellular calcium release from the endoplasmic reticulum
(ER) via IP3 receptors (IP3Rs). This calcium release induces
astrocytic glutamate release, which potentiates synaptic
transmission at distant synapses. The potentiation is given by:

eSP (t) = meSP ·Glu(t)

where meSP is the scaling factor for synaptic potentiation,
and Glu(t) is the concentration of astrocytic glutamate.

TABLE S3
HYPER-PARAMETER LIST FOR THE WIKITEXT-2 DATASET.

Hyper-parameters Value Tested Range
Non-linearity parameter α 0.25 0.1-0.3
Model size D 768 256-1024
Scaling parameter m 100D (50-500)D
Sequence length 512 128-512
Learning rate 0.00001 1e−4 - 5e−6

Batch size 24 8-64
Number of epochs 50 20-100
Number of heads 6 4-12

4) Calcium Dynamics in Astrocytes: The astrocytic calcium
response, which regulates synaptic potentiation, is governed by
the following equation:

d[Ca2+]

dt
= Jchan(IP3, Ca2+) + Jleak − Jpump

where Jchan(IP3, Ca2+) represents calcium influx through
IP3-regulated channels (dependent on IP3 and calcium concen-
tration), Jleak accounts for passive calcium leakage from the
ER, and Jpump describes calcium reuptake into the ER via ATP-
dependent pumps. Once calcium levels exceed a threshold, the
astrocyte releases glutamate, governed by:

d[Glu]

dt
= −Glu

τGlu
+ rGlu ·H(Ca2+(t)− θCa)

where τGlu is the decay constant of glutamate, and θCa is
the calcium threshold that triggers release, and H(x) is the
Heaviside function defined as H(x) = 1 if x ≥ 0 and H(x) =
0 if x < 0.

5) Modulation of Synaptic Transmission Probability (PR):
The total synaptic transmission probability PR(t) is influ-
enced by both the direct depressive effect and indirect po-
tentiation, as follows:

PR(t) = PR(0) + PR(0) · DSE(t) + eSP (t)

100

where PR(0) is the baseline synaptic transmission probability.
This appendix presents a detailed mathematical framework

for neuron-astrocyte-mediated synaptic dynamics, which are
key to the functionality of astromorphic computational sys-
tems.

E. Appendix E: Algorithm and Pseudo-code

The pseudo-code (Algorithm 1) represents the core steps of
the astromorphic transformer, where neuron-astrocyte interac-
tions modulate synaptic weights, enhancing the self-attention
mechanism. The algorithm operates through two phases: Write
Mode and Read Mode, followed by the generation of the
final transformer output. In the initialization step, the weight
matrices for neurons and astrocytes, the presynaptic plasticity
parameter, the non-linearity parameter, and the edge matrix
representing token positions are set up. During the Write
Mode, keys and values are generated from the input tokens
using learnable weight matrices. The activation function is
applied to introduce non-linearity, resulting in an updated
representation. Hebbian learning is then used to update both
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neuron and astrocyte weight matrices based on the outer
product of the activation and the values, while the presy-
naptic plasticity parameter is updated according to the sum
of activated keys modulated by a non-linearity parameter.
In the Read Mode, after all tokens have been processed, a
query matrix is generated from the input tokens. The activa-
tion function is applied to these queries, and the astrocytic
calcium response is computed. The modulation factor, which
is inversely proportional to the calcium response, adjusts the
synaptic weights dynamically. The final output is calculated by
matrix multiplication of the synaptic weights and the activated
queries along with an addition of a residual connection from
the input. The final transformer output is processed through
layer normalization to stabilize and accelerate training. A feed-
forward network introduces additional non-linearity, followed
by another layer normalization step with a residual connection
to ensure gradient flow. Finally, a linear transformation and
softmax function produce the final logits, representing the
output probabilities of the model.

Algorithm 1 Astromorphic Transformer Algorithm
1: Initialization: Initialize parameters and hyper-parameters
2: Initialize input tokens X , token embedding dimension d,

hidden layer neurons m
3: Initialize Hebbian weight matrix Hneuron and astrocyte

weight matrix Hastro to 0
4: Initialize presynaptic plasticity parameter g to 0
5: Set non-linearity parameter, α
6: Set edge between input tokens xi and xj : aij
7: Write Mode: Encode keys and values from input tokens
8: for each token xt in input tokens X do
9: kt ← xtWk

10: vt ← xtWv

11: ht ← ϕ(kt)
12: {Hebbian learning for neuron and astrocyte plasticity}
13: Hneuron,t ← Hneuron,0 +

1
mhT

t vt
14: Wastro ← ϕ(aTij)
15: Hastro,t ← Hastro,0 +

1
mWastrovt

16: {Presynaptic plasticity based on calcium dynamics}
17: g ← g + (

∑
(ht))

α

18: end for
19: Read Mode: Retrieve information using query for all

tokens
20: Q← XWq

21: h← ϕ(Q)
22: C ← hgT

23: P ← 1
C

24: L← h((Hneuron +Hastro)⊙ P ) +X
25: Lnorm ← LayerNorm(L)
26: Loutput ← LayerNorm(FFN(Lnorm) + Lnorm)
27: logits← Softmax(Linear(Loutput))
28: return logits


