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Abstract. Everything we know is based on our brain’s ability to process
sensory data. Hearing is a crucial sense for our ability to learn. Sound is
essential for a wide range of activities such as exchanging information,
interacting with others, and so on. To convert the sound electrically, the
role of the audio signal comes into play. Because of the countless essen-
tial applications, audio signal & their classification poses an important
value. However, in this day and age, classifying audio signals remains a
difficult task. To classify audio signals more accurately and effectively,
we have proposed a new model. In this study, we’ve applied a brand-
new method for audio classification that combines the strengths of Deep
Convolutional Neural Network (DCNN) and Long-Short Term Memory
(LSTM) models with a unique combination of feature engineering to get
the best possible outcome. Here, we have integrated data augmentation
and feature extraction together before fitting it into the model to evalu-
ate the performance. There is a higher degree of accuracy observed after
the experiment. To validate the efficacy of our model, a comparative
analysis has been made with the latest conducted reference works.
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1 Introduction

Digital and analog audio signals both use a varying amount of electrical voltage
to delineate sound. Our daily lives depend heavily on audio signals of various
origins. No one would be able to hear anything without it. Audio signals are
now required not just by humans, but also by man-made machines. Human-
like sound comprehension has several uses, involving intelligent machine control
and monitoring, acoustic information use, acoustic surveillance, and categoriza-
tion and information extraction applications such as exploring audio archives
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and audio-assisted multimedia assets [9]. For many years, categorizing audio or
sound has been an important area of research. Intending to achieve this classi-
fication, multiple models and features have been tried and experimented with
over the years, all of which have proved to be helpful and accurate in the pro-
cess of classifying and separating audio and sound. Many possible applications
exist in the area of sound detection and classification, including matrix factor-
ization, the categorization of music genres, wavelet filterbanks, automated music
tagging, dictionary learning, bird song classifications, IoT embedded automated
audio categorization, and emotion recognition [1–3,6,8,12]. Since deep learning
was introduced, it has boosted research in various fields and swiftly superseded
traditional machine learning algorithms by exhibiting superior performance on
numerous tasks. With or without Artificial Intelligence, there are countless pos-
sible approaches for developing audio recognition and classification models that
use various audio feature extraction procedures. The detection and categoriza-
tion of ambient sound is a fascinating subject with several applications, ranging
from crime detection to environmental context-aware analysis. For audio clas-
sification, prominent classifier models include those that use sensible artificial
intelligence or linear predictive coding, as well as those Deep Neural Networks,
Decision Tree Classifier, and Random Forest.

A few contributions have been made to the field of audio categorization. In
recent research studies, convolutional neural networks were shown to be very
efficient in classifying brief audio samples of ambient noises. The authors in
[11] used the publicly accessible ESC-10, ESC-50, and Urbansound8K data sets
and enhanced them by adding arbitrary temporal delays to the original tracks
and conducted class-dependent time stretching and pitch shifting on the ESC-10
training set, as well as extracted Log-scaled mel-spectrograms from all record-
ings, to develop a model composed of two convolutional ReLU layers with max-
pooling, two fully connected layers of each ReLU, and a softmax output layer
trained on a low-level audio data representation. The authors used 300 epochs
for the short segment version and 150 epochs for the long segment variant and
tested the model using fivefold cross-validation (ESC-10 and ESC-50) and ten-
fold cross-validation (UrbanSound8K) with a single training fold to show that
CNN outperformed solutions based on manually-engineered features. Palanisamy
et al. [10] showed that standard deep CNN models trained on ImageNet might
be used as strong foundation networks for audio categorization. They claimed
that just by fine-tuning basic pre-trained ImageNet models with such a sin-
gle set of input character traits for audio tasks, they could achieve cutting-edge
results on the UrbanSound8K and ESC-50 datasets, as well as good performance
on the GTZAN datasets, and to define spectrograms using qualitative visuals,
CNN models might learn the bounds of the energy distributions in the spec-
trograms. Abdoli et al. [4] presented a method for classifying ambient sound
that uses a 1D Convolutional Neural Network (CNN) to attempt to acquire a
representation straight from the audio input in order to capture the signal’s pre-
cise temporal characteristic. The performance of their proposed end-to-end app-
roach for detecting ambient noises was found to be 89% accurate. The suggested
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end-to-end 1D design for ambient sound categorization employs lesser parame-
ters than the bulk of previous CNN architectures while reaching a mean accuracy
of 11.24% to 27.14% greater than equivalent 2D designs.

In our research, we’ve introduced an entirely new technique to audio classifi-
cation strategy by integrating two separate models: deep CNN and LSTM. Before
we train the data in our newly proposed model, we used a unique combination of
feature engineering methods to discover the best results. There are three phases
to sound classification: audio signal preprocessing, spectral feature extraction,
and classification of the corresponding audio signal. The Urbansound8K dataset
has been utilized for audio categorization by our team. There are 8732 audio
slices in total that have been tagged in this dataset. There are ten groups in
the audio file which entails air conditioning, car horns, children’s laughter, dog
barks, engine idle, gunshots, jackhammers, sirens, and street music and all of
them are examples of ambient noise. Data augmentation is first used to improve
the model’s training results so that it can yield good results. Three data augmen-
tation methods were investigated: time-stretching, noise introduction, and pitch
shifting. To convert audio data to numerical values, we used the NumPy array
in python. The audio was then transformed using spectral features via Fourier
Transform from the time domain to the frequency domain. In addition to Zero
Crossing Rate, Chroma STFT (Short-Time Fourier Transform), MFCC (Mel-
frequency Cepstral Coefficient), Mel spectrogram, RMS, and Tonnetz, we have
also computed a number of feature extraction approaches like these. Spectral
feature extraction approaches are being combined to create a new model. After
that, the 34928 numerical data with a total field of 5867904 have been integrated
using data augmentation and spectral feature extraction before training the data
into the model. We trained with 80% of the data, tested with 10%, and validated
with 10%. Finally, we’ve trained the data with our recommended model, a hybrid
of deep CNN and LSTM. There are three layers in a deep CNN. We have used
Adam optimizer for improved optimization. Hyperparameter tuning uses batch
normalization, maximum pooling, and dropout all at once. ReLU and Softmax
were used to fit the model, and Softmax was also employed for the output layer.
The LSTM model’s input layer receives data from the output layer. The LSTM
model makes use of two levels. As with deep CNN, we used Adam optimizer and
activation functions like ReLU and Softmax to fit the model better and improve
tuning. However, in this case, dropout was used for hyperparameter tuning. After
that, the accuracy of audio classification was significantly enhanced. Finally, our
novel model has been compared to the models from other recent reference works
in order to highlight its worth.

2 Methodology

The overall methodology of our suggested audio classification model is described
in this section. We have used a benchmark dataset UrbanSound8K [13] for vali-
dating our model. This dataset contains 8732 brief audio samples (with a dura-
tion of 4 s or less) taken from a variety of urban recordings, including air condi-
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tioners, vehicle horns, kids playing, barking dogs, drilling, engine revving, gun-
shots, jackhammers, sirens, and street music, among other things. This dataset
is divided into ten (ten) classes, as stated above. It was found that vehicle horns,
gunshots, and siren noises were not uniformly dispersed throughout the class-
rooms.

2.1 Data Augmentation

Data augmentation is a simple technique for generating synthetic data with
variations from the current or existing samples to offer the model with larger
data samples with more variety, allowing the model to prevent overfitting and
be more generalized. There are several augmentation methods in audio, such as
Noise Injection, Time Shifting, Pitch Shifting, Changing Speed, Time Stretching,
and others.

This research has adopted three data augmentation techniques: Background
Noise Injection, Pitch Shifting, and Time Stretching. In Noise Injection, the
sample data was merged with a separate recording that includes external noise
from a variety of acoustics. Each data was generated by,

m = xi(1 − w) + wyi (1)

where xi is the original audio sample of the dataset, yi is the background noise
that is injected, and w is the weighted parameter chosen randomly for each
merge within a range of 0.001 to 0.009. During Pitch Shifting, the pitch of the
audio samples is either increasingly or decreasingly shifted based on a particular
value. Each data was pitch-shifted by [−2,−1, 1, 2]. Time stretching is an audio
processing technique that lengthens or shortens the duration of a sample without
altering its pitch. The augmentation techniques were applied using the Librosa
library. Figure 1a, 1b and 1c illustrate the data augmentation techniques applied
in the dataset.

2.2 Spectral Feature Extraction

When using feature extraction, the acoustic signal is transformed into a series
of acoustic feature vectors that accurately describe the input audio sound. The
goal is to condense the several massive amounts of data in each file into a consid-
erably smaller collection of characteristics with a known number. We have used
spectral characteristics to solve our classification problem, which involves uti-
lizing the Short-Time Fourier Transformation to transform the enhanced audio
samples from time domain to frequency domain displayed in Fig. 2a There are
numerous spectral features. Among them, we have employed six: Zero Crossing
Rate, Chroma STFT, MFCC, Mel spectrogram, Tonnetz, and computing RMS
value for each frame. Figure 2b, 2c and 2d represent the plotting of spectrogram
for each feature extraction technique.
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(a) After Background Noise Injection (b) After Time Stretching

(c) After Pitch Shifting

Fig. 1. Data augmentation illustration

(a) Audio Conversion to Frequency Do-
main (b) Mel-Scaled Power Spectrogram

(c) Mel Frequency Cepstral Coeffi-
cients

(d) Chroma Short Time Fourier Trans-
form

Fig. 2. Audio conversion & spectral feature extraction

Zero-Crossing Rate indicates that how many times the signal shifts from pos-
itive to negative and vice-versa, and that will be divided by the frame duration
[7], where sgn is the sign function.
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Zi =
1

2wL

wL∑

n=1

|sgn[xi(n)] − sgn[xi(n − 1)]| (2)

The Chroma rate of an audio signal depicts the strength of each of the audio
signal’s twelve distinct pitch classes. They can be used to distinguish between
the pitch class profiles of audio streams. Chroma STFT contains information
regarding pitch and signal structure categorization and uses short-term Fourier
transform to generate Chroma properties. MFCC stands for Mel Frequency Cep-
stral Coefficients are concise representations of the spectrum. By transforming
the conventional frequency to Mel Scale, MFCC takes into consideration human
perception for sensitivity at correct frequencies. Mel spectrogram is a combi-
nation of Mel scale and spectrogram, whereas Mel scale denotes the frequency
scale’s nonlinear transformation. The y-axis indicates Mel scale, while the x-axis
depicts time. Tonnetz detects harmonic shifts in audio recordings to calculate
tonal centroid features. It is an infinite planar representation of pitch relation-
ships in an audio sample.

For feature scaling purposes in our proposed method, we have utilized two
standard techniques, ‘One Hot Encoding’ and ‘Standard Scaler’. One hot encod-
ing replaces the label encoded categorical data with numbers. It is a standardiza-
tion technique to scale the independent features to bring them in the same fixed
range. The Standard Normal Distribution (SND) is followed by StandardScaler.
That’s why the mean is set to 0, and the data is scaled to unit variance.

2.3 Deep CNN-LSTM Model Architecture

In the DCNN-LSTM design, CNN layers for feature extraction on input data
are integrated with LSTMs to provide sequence prediction, resulting in a highly
efficient feature extraction system. We combined CNN and LSTM models, both
of which use spectrograms as their input. In order to generate a DCNN-LSTM
model, Deep CNN layers on the front end were combined with LSTM layers and
a Dense layer on the output. In this architecture, two sub-models are used for
feature extraction and feature interpretation across a large number of iterations:
the Deep CNN Model for extracting features and the LSTM Model for feature
interpretation (Fig. 3).

We presented a model that consists of three layers of 2D convolutional net-
works, and two layers of MaxPooling2D arranged into a stack of the desired
depth. These layers assess the spectral properties of the spectrograms, while the
pooling layers help solidify the interpretation. The Conv2D layers interpret the
spectrum characteristics of the spectrograms, and the pooling layers consolidate
the interpretation. The first Conv2D layer that processes the input shape uses
64 filters, a kernel size of 5, and a stride of 1 before applying a MaxPooling layer
to decrease the size of the input shape. Our framework utilizes a 5x5 filtered
matrix as the argument defines the kernel’s window’s size. Due to stride being
set to 1 in the first layer, the filter moves one unit to converge around the input
volume. Using the ‘same padding’ technique, this convolutional layer yields the
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Fig. 3. Overall proposed methodology

same height and weight as the original. We chose ReLU as the activation func-
tion for this layer instead of sigmoid units because of its many advantages over
more conventional units, including efficient gradient propagation and faster cal-
culation than sigmoid units. Also, in order to minimize overfitting, there is a
dropout of 0.3 in the layers that uses the same padding method and activation
function (ReLU) as the other two Conv2D layers.

To stack the LSTM layers, we first created two LSTM layers with a total
hidden unit count of 128 for each layer, and then we set the return sequence to
true in order to stack the layers. To avoid overfitting, the output of both LSTM
layers requires a 3D array followed by Time Distributed Dense layers as input
with a dropout of 0.2 to be used. As a result, it was determined that ReLU would
be used as the activation function in both layers with input sizes of 64 and 128 for
the first layer since its input shape is (21,8), which indicates 20 iterations and will
inform LSTM how many numbers of instances it should go through the process
once the input has been applied. Afterward, the outcome from the time dispersed
dense layer is utilized as the input in the flatten layer, and the process repeats
until the desired result is achieved. When we were finished with the flattening
process, we were left with a vector of input data, which we then passed through
the dense layer. We were able to transform the information provided to a discrete
probability distribution and use that distribution as an input in the dense layer
by utilizing the Softmax activation function in the dense layer of the network.

We have utilized the Adam, an optimization technique, which measures the
rate of development at which a parameter adapts to changes in its environment.
The Adam optimizer outperforms the previous ones in terms of performance
and provides a gradient descent that is tuned. For individual parameters, the
adaptive learning rates are used to estimate the appropriate level of learning. In
many circumstances, it has been shown that Adam favors error surfaces with flat
minima, which is a good optimizer. The parameters β1 and β2 only specify the
periods over which the learning rates degrade, and not necessarily the learning
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rate itself. The acquisition rates will be all over the place if they degrade quickly.
It will take a long time to learn the learning rates if they degrade slowly. The
learning rates are automatically calculated based on a moving estimate of the
parameter gradient, and the parameter squared gradient in all circumstances.

3 Results

Our research strategy involved identifying attributes that are both effective and
accurate for the DCNN-LSTM model. In this section, we assess our model in
terms of experiments conducted. We also evaluate the effectiveness of our pro-
posed ensemble method, pre-trained weights, and finally compare to some of the
previous state-of-the-art models.

(a) Loss vs no. of epochs (b) Accuracy vs no. of epochs

Fig. 4. Validation loss & accuracy of our proposed model

In the data preprocessing module, we stacked three data augmentation tech-
niques, background noise injection, time-stretching, and pitch shifting, to reduce
overfitting & evaluate the performance of our model. To extract spectral features
from the spectrograms, MFCCs, Mel Spectrogram, Chroma STFT, Tonnetz were
stacked with one another in addition to computing zero-crossing rate (ZRC) and
Root Mean Square (RMS) value for each frame of the audio data and obtained 169
features in total to work with. Stacking the techniques was effective in enhancing
our model’s performance considerably. We then fed the data into our proposed
DCNN-LSTM model illustrated in Sect. 2.3, evaluated performance metrics, and
validated the model for the dataset. Stacking those techniques helped us to reach
a better validation accuracy of 93.19% with an epoch size of 26 and used Stratified
10-fold cross-validation to ensure the robustness of the result in terms of model-
ing CNN (layer 3 Conv2D, epochs of 50) with 86.1% and LSTM (layer 2, epochs
of 200) with 87.75% respectively for the training process. Figure 4 illustrates the
validation loss and accuracy of our proposed DCNN-LSTM model in the y-axis
and the number of epochs in the x-axis as we can see that with the increase in the
number of epochs, the validation error of our model decreases exponentially for
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both the training and testing data. The epoch count was set at 50. Still, the error
stopped improving after 26 epochs and returned the accuracy and loss result due
to the early Callback function without further increasing the computational time
for the model. Table 1 shows the comparison accuracy of our proposed model with
the previous state-of-the-art models.

Table 1. Proposed model vs previous state-of-the-art models

Model Dataset Accuracy (%)

logmel-CNN [16] ESC-50 78.3

DCNN + Mix-up [17] UrbanSound8K 83.7

DenseNet (Pretrained Ensemble) [10] UrbanSound8K 87.42

Conv1D + Gammatone [4] UrbanSound8K 89

DCNN with Multiple Features + Mix-up [14] ESC-50 88.5

GoogleNet [5] UrbanSound8K 93

TSCNN-DS [15] UrbanSound8K 97.2

Proposed DCNN-LSTM + UrbanSound8K 93.19

Stacked Features & Augmentation

4 Conclusion

This paper proposes an approach to urban sound classification, which comprises
a deep neural network of two different neural network models, CNN and LSTM.
Also, in combination with two separate stacks of various multiple data augmen-
tation and feature extraction techniques. UrbanSound8K has been used to train
and test our models, one of the finest datasets of this domain. With the afore-
mentioned feature engineering, training, validating, and testing the model on
this dataset assists us to acquire a decent result of 93.19% accuracy, which is
pretty much close to state-of-the-art result and better than other previous works.

Though we have emphasized data augmentation on a single dataset, the
comparison would be more relevant if we could also work with other prominent
datasets. Our model’s such accuracy comes without any usage of pre-trained
models and transfer learning. So, there remains a scope of future work of using
these two, possibly improving our existing accuracy. Moreover, a simple stack
of DCNN-LSTM has been effectively used for urban sound classification and
has achieved a high score, and it is a matter of future research that whether
various combinations of more sophisticated models of recurrent neural networks
or convolutional neural networks can bring much better score.
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